Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный университет»

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.В.ОД.14 Основы искусственного интеллекта»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>09.03.01 Информатика и вычислительная техника</u>

(код и наименование направления подготовки)

Общий профиль (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация <u>Бакалавр</u> Форма обучения *Очная*

Рабочая программа рассмотрена и утверждена на заседании кафедры

кафедра программного обеспечен		ание кафедры	оматизированных систем
протокол № <u>6</u> от " <u>9</u> "	<i>02</i> 20 <u>16</u> г.		
Заведующий кафедрой	1		
Кафедра программного обеспеч	нения вычисли	тельной техники	и автоматизированных систе
	Mour	Н.А. Соловьет	В
наименование кафедры	подпись	расшифровка подписи	1
<i>Исполнители:</i> доцент кафедры	MI	А.М. Семенов	
доцент кафедры	poonucs /	расшифровка подпис	
СОГЛАСОВАНО:	MMATTOT	TRAPOZAT	
Председатель методической коми			
09.03.01 Информатика и вычисли			Н.А. Соловьев
Заведующий отделом комплектов	ания научной бі	личная Модпись иблиотеки Н.Н. Грицай расшифровка подписи	расшифровка подписи
личная портись	TANGGA	расшифровка поописи	
Уполномоченный по качеству фан	magness I	 В. Крючкова 	
личная подпись		расшифровка подписи	

© Семенов А.М., 2016 © ОГУ, 2016

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: изучение теоретических основ ИИ, моделей и методов искусственного интеллекта, программных средств, применяемых при разработке компонентов информационных систем с элементами искусственного интеллекта.

Задачи: оосновными задачами, решаемыми в процессе освоения дисциплины, являются:

- ознакомление студентов с основными направлениями развития ИИ;
- изучение основ интеллектуального анализа данных;
- изучение моделей и методов ИИ;
- развитие навыков разработки прототипов баз знаний для слабоформализуемых предметных областей;
- развитие способностей разрабатывать компоненты информационных систем с элементами искусственного интеллекта.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательным дисциплинам (модулям) вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: *Б.1.В.ОД.2 Математическая логика и теория алгоритмов, Б.1.В.ОД.9 Вычислительная математика, Б.1.В.ОД.13 Компьютерное моделирование*

Постреквизиты дисциплины: Б.2.В.П.3 Преддипломная практика

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
Знать:	ПК-1 способностью
- модели и методы искусственного интеллекта, программные средства	разрабатывать модели
для решения практических задач	компонентов
Уметь:	информационных систем,
- разрабатывать компоненты информационных систем с элементами	включая модели баз данных
искусственного интеллекта, в том числе на основе методик использо-	и модели интерфейсов
вания программных средств, ориентированных на решение практиче-	"человек - электронно-
ских задач	вычислительная машина"
Владеть:	
- навыками проектирования прототипов баз знаний и моделей	
интерфейсов "человек – электронно - вычислительная машина"	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 академических часов).

	Трудоемкость,		
Вид работы	академических часов		
	7 семестр	всего	
Общая трудоёмкость	180	180	
Контактная работа:	67,25	67,25	
Лекции (Л)	34	34	
Практические занятия (ПЗ)	16	16	
Лабораторные работы (ЛР)	16	16	
Консультации	1	1	
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	

	Трудоемкость,		
Вид работы	академических часов		
	7 семестр	всего	
Самостоятельная работа:	112,75	112,75	
- выполнение индивидуального творческого задания (ИТЗ);			
- самоподготовка (проработка и повторение лекционного материала и			
материала учебников и учебных пособий;			
- подготовка к лабораторным занятиям;			
- подготовка к практическим занятиям;			
- подготовка к рубежному контролю.			
Вид итогового контроля (зачет, экзамен, дифференцированный	экзамен		
зачет)			

Разделы дисциплины, изучаемые в 7 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Теоретические основы искусственного	46	8	4	4	30
	интеллекта					
2	Основы теории нечетких множеств	38	6	4	4	24
3	Основы нейронных сетей и эволюционные	50	12	4	4	30
	алгоритмы					
4	Экспертные системы	46	8	4	4	30
	Итого:	180	34	16	16	114
	Всего:	180	34	16	16	114

4.2 Содержание разделов дисциплины

1 Раздел Теоретические основы искусственного интеллекта

Введение: краткая история и терминология. Теоретические задачи, решаемые ИИ. Области применения ИИ. Структура исследований в области ИИ. Структуры и стратегии поиска в пространстве состояний. Представление знаний. Общий обзор. Продукционная модель. Технологии интеллектуального анализа данных. Практическое применение Data Mining. Классификация задач, методов и моделей Data Mining. Основные алгоритмы DM. Машинное обучение.

2 Раздел Основы теории нечетких множеств

Не-факторы. Нечеткие множества и нечеткая логика. Функции принадлежности. Логические операции над нечеткими множествами. Нечеткое отношение и способы его задания. Композиционные правила. Алгоритмы нечеткого вывода. Методы построения ФП. Нечеткая кластеризация. Принятие решений в нечетких условиях по схеме Беллмана-Заде.

3 Раздел Основы нейронных сетей и эволюционные алгоритмы

Нейронные сети. Основные понятия и определения НС. Архитектура НС и правила представления знаний. Алгоритм обучения персептрона. Структуры сетей МLР. Нейронные сети Кохонена, Хопфилда, Хемминга, Гросберга. Алгоритмы обучения. Практическое применение. Эволюционные вычисления. Генетические алгоритмы (ГА). Основные понятия и определения. Особенность и эффективность ГА. Применение генетических алгоритмов при решении практических задач.

4 Раздел Экспертные системы

Структура ЭС. Этапы разработки экспертных систем. Инструментальные средства разработки ЭС. Модели представления знаний. Методы логического вывода. Методы приобретения знаний. Экспертное оценивание как процесс измерения. МАИ. Неопределенности в экспертных системах. Байесовская стратегия логического вывода. НЕ-факторы в ЭС. Нечеткие экспертные системы. ЭС на основе нечетких сетей Петри. ЭСРВ. ЭС на основе НС. Перспективы развития и применения нейронных, нечетких систем и гибридных систем.

4.3 Лабораторные работы

№ ЛР	$\mathcal{N}_{\underline{0}}$	Наименование лабораторных работ	
раздела		паименование лаоораторных расот	
1	1	Исследование алгоритма построения деревьев решений в АП Deductor Studio Academic	2
2	1	Исследование алгоритма поиска ассоциативных правил в АП Deductor Studio Academic	2
3	2	Разработка нечеткой системы и исследование алгоритма Мамдани	2
4	2	Исследование алгоритма нечеткой кластеризации	2
5	3	Исследование алгоритма обучения персептрона. Задача классификации.	2
6	3	Исследование нейронных сетей средствами Deductor Studio Academic. Задача прогнозирования.	2
7	4	Исследование и изучение методики разработки экспертной системы на основе продукционной модели представления знаний	
8	4	Исследование и программная реализация экспертной системы на основе байесовской стратегии логического вывода.	
		Итого:	16

4.4 Практические занятия (семинары)

$N_{\underline{0}}$	$N_{\underline{0}}$	Тема	
занятия	раздела		
1	1	Структуры и стратегии поиска в пространстве состояний. Задача	2
		коммивояжера. Алгоритм полного перебора, метод ветвей и	
		границ	
2	1	Методы кластерного анализа. Алгоритм k-means	2
3	2	Нечеткие множества, нечеткие отношения. Программная реали-	2
		зация одного из композиционных правил	
4	2	Методы построения функций принадлежности	2
5	3	Нейронные сети. Решение практических задач.	2
6	3	Интеллектуальный анализ данных. Нечеткие множества.	2
		Нейронные сети. Генетический алгоритм (семинар)	
7	4	Расчет групповых оценок мероприятий, приводящих к решению	2
		проблемы и коэффициентов компетентности каждого из экспер-	
		TOB	
8	4	Принятие решений на основе метода анализа иерархий. Методы	2
		сравнения альтернатив.	
		Итого:	16

4.5 Индивидуальное творческое задание

Варианты индивидуальных заданий, тематика и критерии оценки приведены в ФОС дисциплины.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

1. Семенов, А.М. Интеллектуальные системы [Текст]: учебное пособие для студентов, обучающихся по программам высшего профессионального образования по направлениям подготовки 230100.68 Информатика и вычислительная техника, 231000.68 Программная инженерия / А. М. Семенов, Н. А. Соловьев, Е. Н. Чернопрудова, А. С. Цыганков; М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Оренбург. гос. ун-т". -

Оренбург: ОГИМ, 2014. - 237 с. - Библиогр.: с. 218-221. - Прил.: с. 222-236. - ISBN 978-5-9723-0158-4. Издание на др.носителе [Электронный ресурс]

- 2. Семенов, А.М. Интеллектуальные системы [Электронный ресурс]: учебное пособие для студентов, обучающихся по программам высшего профессионального образования по направлениям подготовки 230100.68 Информатика и вычислительная техника, 231000.68 Программная инженерия / А. М. Семенов [и др.]; М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Оренбург. гос. ун-т". Электрон. текстовые дан. (1 файл: 3.85 Мб). Оренбург: ОГУ, 2013. 236 с. Загл. с тит. экрана. -Adobe Acrobat Reader 6.0 ISBN 978-5-9723-0158-4. Издание на др. носителе [Текст]
- 3. Матвеев,М.Г. Модели и методы искусственного интеллекта. Применение в экономике [Текст] : учебное пособие для студентов вузов, обучающихся по специальности "Прикладная информатика (по областям)" и другим специальностям / М. Г. Матвеев, А. С. Свиридов, Н. А. Алейникова. Москва : Финансы и статистика : ИНФРА-М, 2014. 448 с. : ил. Библиогр.: с. 440-441. Предм. указ.: с. 442-447. ISBN 978-5-279-03279-2. ISBN 978-5-16-003412-6.
- 4. Гаврилова, Т. А. Базы знаний интеллектуальных систем: учеб. пособие для вузов / Т. А. Гаврилова, В. Ф. Хорошевский. СПб. : Питер, 2001. 384 с. : ил. Библиогр.: с. 358-382. ISBN 5-272-00071-4.

5.2 Дополнительная литература

- 1. Сидоркина, И.Г. Системы искусственного интеллекта [Текст] : учеб. пособие для вузов / И. Г. Сидоркина. М. : КноРус, 2011. 245 с. Глоссарий: с. 239-243. Библиогр.: с.244-245.-ISBN978-5-406-00449-4.
- 2. Комашинский, В.И. Нейронные сети и их применение в системах управления и связи / В.И. Комашинский. Учеб. пособие для вузов: М.: Высш. шк., 2004.-261 с.
- 3. Джарратано, Д. Экспертные системы: принципы разработки и программирование / Д. Джарратано, Г. Райли.: пер. с англ.-М.: ООО «И.Д.Вильямс», 2007.-1152 с.
- 4. Чулюков, В. А. Системы искусственного интеллекта. Практический курс: Учеб. пособие для вузов / В.А. Чулюков. М.: Бином, 2008. 293 с.: ил.
- 5. Ясницкий, Л. Н. Введение в искусственный интеллект : учеб. пособие / Л. Н. Ясницкий. 2-е изд., испр. М. : Академия, 2008. 176 с.

5.3 Периодические издания

Библиотечный фонд содержат следующие журналы:

- 1. Автоматизация. Современные технологии: журнал. М.: Агентство "Роспечать", 2016.
- 2. Программные продукты и системы : журнал. М. : Агентство "Роспечать", 2016.
- 3. Вестник компьютерных и информационных технологий : журнал. М. : Агентство "Роспечать", 2016.
- 4. Информационные технологии в проектировании и производстве : журнал. М. : Агентство "Роспечать", 2016.
 - 5. Открытые системы. СУБД: журнал. М.: Агентство "Роспечать", 2016.
 - 6. Информационные технологии: журнал. М.: Агентство "Роспечать", 2016.
 - 7. Мехатроника, автоматизация, управление : журнал. М. : Агентство "Роспечать", 2016.

5.4 Интернет-ресурсы

- 1. https://sites.google.com/site/upravlenieznaniami/home сайт «Управление знаниями».
- 2. http://window.edu.ru/window/catalog: Единое окно доступа к образовательным ресурсам. Информационные технологии
 - 3. https://www.lektorium.tv/mooc2/32247. «Лекториум», MOOK: «Нейронет: вводный курс».
- 4. http://citforum.ru/ портал аналитических и научных статей в области информационных технологий.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- OpenOffice/LibreOffice свободный офисный пакет программ, включающий в себя текстовый и табличный редакторы, редактор презентаций и другие офисные приложения.
 - Операционная система Microsoft Windows;

- Среда разработки программных приложений Microsoft Visual Studio.
- Пакет прикладных математических программ, предоставляющий открытое окружение для инженерных (технических) и научных расчётов Scilab.
 - Аналитическая платформа Deductor Academic.

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Для проведения практических и лабораторных занятий используется компьютерный класс, оснащенный компьютерной техникой, удовлетворяющей требованиям к конфигурации аппаратного обеспечения используемых программ.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой подключенной к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические указания для обучающихся по освоению дисциплины.