Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Оренбургский государственный университет»

Кафедра радиофизики и электроники

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.Б.13 Оптика»

Уровень высшего образования

БАКАЛАВРИАТ

<u>Квантовая электроника</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы *Программа академического бакалавриата*

Квалификация <u>Бакалавр</u> Форма обучения <u>Очная</u> Рабочая программа рассмотрена и утверждена на заседании кафедры

Кафедра радиофизики и электроники
протокол № 6 от "24" 2017 г.
Заведующий кафедрой Кафедра радиофизики и электроники Кафедра радиофизики и электроники подпись расшифровка подписи
Исполнители:
Старший преподаватель Кислов Д.А.
должность подпись расшифровка подписи
СОГЛАСОВАНО: Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика код наименование личной подпись расшифровка поописи
Заведующий отделом комплектования научной библиотеки
личних протись расшифровка подписи
Уполномоченный по качеству факультета
личная подпись расшифровка подписи
Мо рагистрании 28310

© Кислов Д.А., 2017 © ОГУ, 2017

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

Формирование у студентов современных представлений об основах физической и прикладной оптики, а также методологических, информационных и организационных основ для последующего самостоятельного усвоения теоретических знаний и выполнения практических заданий.

Задачи:

Изучение основных понятий и уравнений связанных с изучением природы света, законами его распространения и взаимодействия с веществом, приобретение навыков решения задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.10 Механика, Б.1.Б.12 Электричество и магнетизм, Б.1.Б.16.1 Математический анализ, Б.1.Б.16.2 Аналитическая геометрия и линейная алгебра, Б.1.Б.19 Теоретическая механика и механика сплошных сред, Б.1.Б.30 Общий физический практикум, Б.1.Б.32 Методика решения задач по физике

Постреквизиты дисциплины: Б.1.Б.14 Атомная физика, Б.1.Б.20 Электродинамика, Б.1.Б.30 Общий физический практикум, Б.1.В.ОД.1 Нелинейная оптика, Б.1.В.ОД.2 Математическое моделирование физических процессов, Б.1.В.ОД.3 Специальный физический практикум, Б.1.В.ДВ.3.1 Основы интроскопии, Б.2.В.У.1 Практика по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
Знать: основные законы оптики;	ОК-1 способностью
Уметь: понимать содержание текстов учебного и научного характера,	
относящихся к профилю профессиональной подготовки, в которых	философских знаний для
используются понятия, термины, соотношения и концепции	формирования
современной оптики;	мировоззренческой позиции
Владеть: навыками применения изученных теоретических положений	
к самостоятельному решению учебных задач	
Знать:	ОК-7 способностью к
- основные приемы самоорганизации учебной деятельности.	самоорганизации и
Уметь:	самообразованию
- самостоятельно работать с учебной и научной литературой;	
- критически оценивать уровень своей самоподготовки.	
Владеть:	
- методикой работы с учебным и научным текстом;	
- приемами выявления и осознания своих возможностей, личностных	
и профессионально-значимых качеств с целью их совершенствования	
Знать: совокупность экспериментальных фактов составляющих	ОПК-1 способностью к
основу оптики;	овладению базовыми
Уметь: выводить (на уровне воспроизведения) полученные в	знаниями в области
дисциплине расчётные соотношения из основных положений оптики.	математики и естественных
Владеть: понятийным и логическим аппаратом, используемым в	наук, их использованию в

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
данной дисциплине для доказательства теоретических положений,	профессиональной
вывода расчётных соотношений и анализа получаемых результатов	деятельности
Знать: логику оптических представлений при объяснении физических	ОПК-2 способностью
явлений и экспериментов;	самостоятельно приобретать
Уметь: находить в учебной и научной литературе материалы по	новые знания, используя
оптике, которые могут быть использованы для решения задач,	современные
относящихся к профилю профессиональной подготовки	образовательные и
Владеть: навыками работы с литературой по оптике, теории	информационные технологии
колебаний и смежным дисциплинам;.	
Знать: используемые в теории приближенные методы решения неко-	ОПК-3 способностью решать
торых уравнений;	стандартные задачи
	профессиональной
<u>Уметь:</u> применять теоретические знания к решению практических и	деятельности на основе
научных задач;	информационной и
	библиографической
Владеть: информацией по данной дисциплине на уровне умения	культуры с применением
вести дискуссию и отстаивать собственную точку зрения;	информационно-
стереотипами проведения теоретических, модельных и	коммуникационных
экспериментальных исследований оптических процессов.	технологий и с учетом
	основных требований
	информационной
	безопасности

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единиц (144 академических часов).

Вид работы		Трудоемкость, академических часов		
•	4 семестр	всего		
Общая трудоёмкость	144	144		
Контактная работа:	51,25	51,25		
Лекции (Л)	34	34		
Практические занятия (ПЗ)	16	16		
Консультации	1	1		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25		
Самостоятельная работа:	92,75	92,75		
- самостоятельное изучение разделов;	,	Ź		
1. Методы и приборы измерения световых величин	4	4		
2. Глаз как приемник излучения	4	4		
3. Применение интерференции в науке и технике	4	4		
4. Методы получения и изучения поляризованного света	4	4		
5. Эффект Доплера	4	4		
6. Попытка обнаружения абсолютного движения Земли	1	1		
7. Рассеяние света в оптически неоднородной среде	4	4		
8. Молекулярное рассеяние света	4	4		
9. Поляризация рассеянного света	6	6		
10. Нелинейная поляризация вещества как причина нелинейных световых	4	4		
явлений	6	6		
11. Самофокусировка света				
12. Оптические явления в атмосфере	20,75	20,75		
- самоподготовка (проработка и повторение лекционного материала и	,	, -		

	Трудоемкость,		
Вид работы	академических часов		
	4 семестр	всего	
материала учебников и учебных пособий;	28	28	
- подготовка к практическим занятиям;			
Вид итогового контроля (зачет, экзамен, дифференцированный	экзамен		
зачет)			

Разделы дисциплины, изучаемые в 4 семестре

	Наименование разделов	,	Количество часов				
<u>№</u> раздела		всего	аудиторная работа			внеауд.	
			Л	ПЗ	ЛР	работа	
1	Электромагнитная природа света	12	2	2	-	8	
2	Оптические колебания и волны	14	4	2	-	8	
3	Фотометрия	12	2	2	-	8	
4	Геометрическая оптика	18	4	2	-	12	
5	Интерференция света	22	6	2	-	14	
6	Дифракция света	22	6	2	-	14	
7	Поляризация света и анизотропия	22	4	2	-	16	
8	Молекулярная оптика и люминесценция	22	6	2	-	14	
	Итого:	144	34	16	-	94	
	Bcero:	144	34	16	-	94	

4.2 Содержание разделов дисциплины

№ раз- дела	Наименование раз- дела	Содержание раздела
1	2	3
1	Введение	Основные разделы современной оптики. Этапы развития оптических теорий. Классификация волн. Шкала электромагнитных волн. Оптический диапазон электромагнитных волн. Корпускулярно-волновой дуализм.
2	Фотометрия	Фотометрия. Фотометрические величины. Энергетические и световые характеристики излучения и связь между ними. Единицы измерения световых величин.
3	Оптические колеба- ния и волны	Электромагнитная теория распространения света. Электромагнитная природа света. Уравнения Максвелла. Распространение электромагнитной волны. Волновое уравнение. Бегущие электромагнитные волны. Скорость света. Вектор Умова - Пойнтинга. Интенсивность света. Спектральное разложение света.

4	Геометрическая оптика	Геометрическая оптика. Принцип Ферма. Преломление и отражение света. Теорема Лагранжа-Гельмгольца. Центрированные оптические системы. Тонкая линза. Аберрации оптических систем. Оптические инструменты. Диафрагмы. Глаз как оптическая система. Микроскоп. Телескоп. Спектральные аппараты. Распространение света через границу двух сред. Преломление и отражение света на границе между диэлектриками. Формулы Френеля. Отражение света от поверхности металла.
5	Интерференция света	Интерференция. Принцип суперпозиции линейной оптики. Когерентность и интерференция. Интерференция квазимонохроматического света. Временная когерентность, длина и время когерентности. Получение когерентных пучков в оптике делением волнового фронта и амплитуды. Пространственная когерентность. Полосы равной толщины и равного наклона. Кольца Ньютона. Основные интерференционные схемы. Стоячие волны. Опыт Винера. Интерферометр Майкельсона. Многолучевая интерференция. Интерферометр Фабри-Перо. Формула Эйри. Пластинка Люмера-Герке. Применение интерферометров в научных исследованиях и технике.
6	Дифракция света	Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Зонная пластинка. Графическое сложение амплитуд. Простейшие дифракционные проблемы: дифракция на круглом отверстии, круглом экране, прямолинейном крае экрана. Дифракция Фраунгофера. Дифракция света на двух и многих щелях. Дифракционная решетка. Фазовые решетки. Спектральные дифракционные приборы. Дифракционная теория оптических инструментов. Дифракция на многомерных структурах. Оптическая голография.
7	Поляризация света	Поляризация света. Естественный и поляризованный свет. Поляризация света при отражении и преломлении на границе двух диэлектриков. Двойное лучепреломление. Эллиптически-поляризованный свет. Поляризационные приборы. Оптика анизотропных сред. Плоские волны в кристаллах. Одноосные и двуосные кристаллы. Лучи, волновые нормали и связь между ними.
8	Молекулярная оптика	Молекулярная оптика. Дисперсия света. Основы классической электромагнитной теории дисперсии. Нормальная и аномальная дисперсия. Молекулярное Рассеяние света. Комбинационное рассеяние. Поглощение света. Искусственная анизотропия. Фотоупругие, электрооптические и магнитооптические явления. Эффекты Поккельса и Керра. Вращение плоскости поляризации. Эффект Фарадея.

4.3 Практические занятия (семинары)

№ занятия	№	Тема	Кол-во
ле занятия	раздела	1 CMa	часов
1-2	1	Колебания и волны, их характеристики	2
1-2	2	Световые волны, их особенности	2
3	3	Фотометрические величины и характеристики	2
4	4	Основные понятия геометрической оптики	2

№ занятия	№ раздела	Тема	Кол-во часов
5	5	Условия интерференции, методы расчета	2
6	6	Дифракционные решетки	2
7-8	7	Поглощение и пропускание света	4
		Итого:	16

5 Учебно-методическое обеспечение дисциплины

- 1. Ландсберг, Г.С. Оптика : учебное пособие / Г.С. Ландсберг. 7-е изд., стер. Москва : Физматлит, 2017. 852 с. : табл., граф., схем. ISBN 978-5-9221-1742-5 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=485257
- 2. Матвеев А.Н. Оптика: Учеб. пособие для вузов / А.Н. Матвеев. -М.: Высш. шк., 1985. 352 с.

5.2 Дополнительная литература

- 1. Бутиков Е.И. Оптика: Учеб. пособие для вузов / Е.И. Бутиков. -М.: Высш. школа 1986. 512с.
- 2. Годжаев Н.М. Оптика [Текст] : учеб. пособие для вузов / Н.М. Годжаев. -М. : Высш. шк., 1977. 432 с.
- 3. Ландсберг Г.С. Оптика: Учеб. пособие для вузов / Г.С. Ландсберг.- 5-е изд., перераб. и доп. М. : Высш. шк., 1976. 928 с.
- 4. Сивухин Д.В. Общий курс физики. Оптика [Текст] / Д.В. Сивухин. М.: Физматлит, 1980. 752 с.
- 5. Савельев И.В. Курс общей физики: учеб. пособие для втузовв 3 т / И.В. Савельев. 2-е изд., перераб. М.: Наука, 1982 Т. 2: Электричество и магнетизм. Волны. Оптика. 496 с.: ил. Предм. указ.: с. 493-496

5.3 Периодические издания

Квантовая электроника: журнал. - М.: Агентство "Роспечать", 2017. Оптика и спектроскопия: журнал. - М.: Академиздатцентр "Наука" РАН, 2017.

5.4 Интернет-ресурсы

<u>https://openedu.ru/course/</u> - «Открытое образование», Каталог курсов, МООК: «Геометрическая оптика»;

https://openedu.ru/course/ - «Открытое образование», Каталог курсов, МООК: «Оптика»; http://www.femto.com.ua/index1.html — энциклопедия физики и техники. http://kvant.mccme.ru/ - научно-популярный физико-математический журнал «Квант»;

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Microsoft Windows
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access)
- 3. Springer [Электронный ресурс] : база данных научных книг, журналов, справочных материалов / компания Springer Customer Service Center GmbH . Режим доступа : https://link.springer.com/, в локальной сети ОГУ.

4. https://www.scopus.com/ - реферативная база данных / компания Elsevier;

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории, учебно-наглядными пособиями, плакатами.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

К рабочей программе прилагаются:

• Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;