Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный университет»

Кафедра летательных аппаратов

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.Б.16 Термодинамика и теплопередача»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки <u>24.03.04 Авиастроение</u> (код и наименование направления подготовки)

<u>Самолето- и вертолетостроение</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация <u>Бакалавр</u> Форма обучения *Очная*

Рабочая программа рассмотрена и утверждена на заседании кафедры

Кафедра летательных аппаратов	
	наименование кафедры
протокол № 9 от "25 " апреля 2016 г.	
Заведующий кафедрой	
Кафедра летательных аппаратов	А.Д. Припадчев
Исполнители:	
Преподаватель каф. ЛА	И.С. Быкова
no	однись расшифровка подписи
должность по	одпись расшифровка подписи
СОГЛАСОВАНО:	200 pt 1
Председатель методической комиссии по 24.03.04 Авиастроение	
код нашуенование	личная потись расшифронка потиси
Заведующий отделом комплектования нау	
дологи комплектования нау	учнои оиолиотеки
mentan pedetuen	Н.Н. Грицай расмифровка подписи
Уполномоченный по качеству от АКИ	L
no kaleerby of AKII	
11(0)	А.М. Черноусова

© Быкова И.С., 2016 © ОГУ, 2016

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

получение знаний об основных законах термодинамики и теплопередачи, о закономерностях энергетических преобразований в авиационных двигателях и энергоустановках, о вопросах теплообмена в авиационных конструкциях при их эксплуатации.

Задачи:

- 1) анализ термодинамических систем, выработка практических навыков по расчету термодинамических процессов, а также расчету тепловых режимов отдельных узлов и агрегатов силовых установок летательных аппаратов;
- 2) овладение количественными и качественными методами термодинамического анализа процессов и циклов тепловых двигателей и аппаратов;
- 3) формирование методологического подхода к оценке термодинамических и тепло массообменных процессов.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б. 1.Б. 10 Физика

Постреквизиты дисциплины: Б.1.В.ОД.6 Электрооборудование летательных аппаратов

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

	I
Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
<u>Знать:</u>	ОПК-11 способностью к
- основы планирования, проведения и обработки результатов	проведению экспериментов
эксперимента;	по заданной методике и
- основы методов оценки результатов исследований;	анализу их результатов
- способы представления научно-технической информации.	
Уметь:	
- правильно использовать достижения науки при постановке и	
проведении эксперимента в области термодинамики;	
- правильно классифицировать и находить научно-техническую ин-	
формацию в области термодинамики;	
- правильно оформлять результаты исследований.	
Владеть:	
- навыками планирования и проведения эксперимента;	
- навыками применения современных программных средств для ис-	
следований в области термодинамики и теплотехники;	
- навыками анализа научной информации в своей предметной области	
знания;	
- навыками работы в текстовых процессорах, электронных таблицах,	
базах данных, системах подготовки презентаций и современных	
прикладных программах.	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 академических часов).

Вид работы	Трудоемкость, академических часов		
	4 семестр	всего	
Общая трудоёмкость	108	108	
Контактная работа:	34,25	34,25	
Лекции (Л)	18	18	
Лабораторные работы (ЛР)	16	16	
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	
Самостоятельная работа:	73,75	73,75	
- самоподготовка (проработка и повторение лекционного материала и			
материала учебников и учебных пособий;			
- подготовка к лабораторным занятиям;			
- подготовка к рубежному контролю).			
Вид итогового контроля (зачет, экзамен, дифференцированный	зачет		
зачет)			

Разделы дисциплины, изучаемые в 4 семестре

	Наименование разделов	Количество часов				
№			аудиторная			внеауд. работа
раздела		всего	работа			
1	Осморим за помятия и опродолжиня	6	Л 2	П3	ЛР	4
2	Основные понятия и определения	8	2		2	
2	Анализ термодинамических процессов идеального газа. Определение параметров газового	8	2		2	4
	потока.					
3	Термодинамические свойства и процессы ре-	8	2		2	4
	альных газов и паров					
4	Термодинамические свойства и процессы парогазовых смесей (влажного воздуха)	8	2			6
5	Термодинамика потока газов и паров.	8	2		2	4
	Расчет и построение профиля сопла Лаваля.					
6	Общие свойства круговых термодинамических	8	2			6
	процессов (циклов тепловых машин). Анализ					
	идеального цикла газотурбинного двигателя.					
7	Анализ циклов теплосиловых установок	8	2			6
8	Термодинамические основы новых способов	8			2	6
	преобразования теплоты в электрическую энергию					
9	Анализ циклов холодильных установок и тепловых насосов	8	2			6
10	Теплопроводность	8			2	6
11	Отдельные задачи теплопроводности при ста-	8	2		2	4
	ционарном режиме					
12	Теплопроводность при нестационарном режиме	8			2	6
13	Конвективный теплообмен	14			2	12
	Итого:	108	18		16	74
	Всего:	108	18		16	74

4.2 Содержание разделов дисциплины

1 Основные понятия и определения

- 1. Предмет и метод технической термодинамики.
- 2. Основные определения, термодинамическая система.
- 3. Термические параметры состояния и связь между ними (уравнение состояния).
- 4. Калорические параметры состояния (внутренняя энергия, энтальпия и энтропия).
- 5. Термодинамический процесс и его энергетические характеристики (работа и теплота).
- 6. Аналитические выражения для работы и теплоты процесса. Теплоемкость.
- 7. Первый закон термодинамики.
- 8. Второй закон термодинамики.

2 Анализ термодинамических процессов идеального газа. Определение параметров газового потока.

- 9. Задачи анализа и общие аналитические зависимости.
- 10. Основные термодинамические процессы.
- 11. Политропный процесс и его обобщающее значение.

3 Термодинамические свойства и процессы реальных газов и паров

- 12. Общие свойства реальных газов..
- 13. Фазовая р-t диаграмма и тройная точка.
- 14. Общая характеристика процесса парообразования.
- 15. Анализ трех стадий получения перегретого пара.
- 16. i s Диаграмма водяного пара.

Термодинамические свойства и процессы парогазовых смесей (влажного воздуха)

- 17. Основные определения и характеристики влажного воздуха.
- 18. I d Диаграмма влажного воздуха.
- 19. основные процессы влажного воздуха.

5 Термодинамика потока газов и паров. Расчет и построение профиля сопла Лаваля.

- 20. Уравнение первого закона термодинамики для потока.
- 21. Истечение газов и пара.
- 22. Дросселирование газов и пара.
- 23. Нагнетание газов и пара.

6 Общие свойства круговых термодинамических процессов (циклов тепловых машин). Анализ идеального цикла газотурбинного двигателя.

- 24. Классификация и общая характеристика термодинамических циклов.
- 25. Простейший термодинамический цикл (цикл Карно) и его свойства.
- 26. Общие свойства круговых процессов.

7 Анализ циклов теплосиловых установок

- 27. Общие сведения об оценке эффективности теплосиловых установок.
- 28. Циклы двигателей внутреннего сгорания.
- 29. Циклы газовых турбин и реактивных двигателей.
- 30. Циклы паросиловых установок.
- 31. Циклы атомных электростанций.

8 Термодинамические основы новых способов преобразования теплоты в электрическую энергию

- 32. Структурные схемы современных энергетических установок.
- 33. Цикл установки с магнитогидродинамическим генератором (МГД генератором).
- 34. Методы прямого преобразования теплоты в электрическую энергию.

9 Анализ циклов холодильных установок и тепловых насосов

- 35. Общая характеристика холодильных установок.
- 36. Цикл паровой компрессионной холодильной установки.
- 37. Абсорбционные холодильные установки.
- 38. Цикл пароэжекторной холодильной установки.
- 39. Понятие о цикле глубокого холода.
- 40. Новые принципы получения холода.
- 41. Цикл теплового насоса.

10 Теплопроводность

- 42. Основные положения теплопроводности.
- 43. Закон Фурье.
- 44. Коэффициент теплопроводности.
- 45. Дифференциальное уравнение теплопроводности.
- 46. Краевые условия.

11 Отдельные задачи теплопроводности при стационарном режиме

- 47. Теплопроводность через плоскую стенку при граничных условиях первого рода.
- 48. Теплопроводность через цилиндрическую стенку при граничных условиях первого рода.
- 49. Теплопроводность через плоскую и цилиндрическую стенки при граничных условиях третьего рода (теплопередача)
- 50. Критический диаметр изоляции.
- 51. Интенсификация теплопередачи.

12 Теплопроводность при нестационарном режиме

- 52. Аналитическое решение задачи.
- 53. Регулярный тепловой режим.

13 Конвективный теплообмен

- 54. Основные понятия и определения.
- 55. Дифференциальные уравнения конвективного теплообмена.
- 56. Основы теории подобия.
- 57. Моделирование.

4.3 Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1	2	Исследование теплоотдачи при вынужденном движении воздуха в	2
		трубе методом имитационного моделирования процесса	
		теплообмена	
2	3	Изучение термодинамических свойств и процессов парогазовых смесей (влажного воздуха).	2
3	5	Изучение процесса адиабатного истечения газа через сужающееся	2
		сопло при имитационном моделировании	
4	8	Анализ циклов теплосиловых установок	2
5	10	Определение теплопроводности твердых материалов методом	2
		пластины при имитационном моделировании процесса	
		теплообмена	
6	11	Определение коэффициента излучения электропроводящих	2
		материалов калориметрическим методом при имитационном	
		моделировании процесса теплообмена	
7	12	Исследование теплоотдачи при естественной конвекции около	2
		вертикального цилиндра в атмосфере различных газов методом	
		имитационного моделирования процесса теплообмена	
8	13	Исследование теплоотдачи при естественной конвекции около	2

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
		горизонтального цилиндра методом имитационного	
		моделирования процесса теплообмена	
		Итого:	16

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Кудинов, В. А. Техническая термодинамика и теплопередача [Текст]: учебник для бакалавров, обучающихся по техническим направлениям и специальностям / В. А. Кудинов, Э. М. Карташов, Е. В. Стефанюк.- 2-е изд., перераб. и доп. Москва: Юрайт, 2013. 567 с.: ил. (Бакалавр. Базовый курс). Библиогр.: с. 562-566. ISBN 978-5-9916-2066-6.
- 2. Химическая термодинамика с Mathcad. Расчетные задачи: Учебное пособие / Д.Г. Нарышкин. М.: ИЦ РИОР, НИЦ ИНФРА-М, 2016. 199 с.: 60х90 1/16 (Переплёт) ISBN 978-5-369-01479-0 Режим доступа: http://znanium.com/catalog/product/503896

5.2 Дополнительная литература

- 1. Нащокин, В. В. Техническая термодинамика и теплопередача [Текст]: учеб. пособие для неэнерг. спец. вузов / В.В. Нащокин .- 3-е изд., испр. и доп. М.: Высш. шк., 1980. 469 с.: ил.. Библиогр. в конце текста.
- 2. Механика, термодинамика и молекулярная физика : сборник задач и примеры их решения / Дубровский В.Г., Харламов Г.В. Новосиб.: НГТУ, 2010. 176 с.: ISBN 978-5-7782-1410-1 Режим доступа: http://znanium.com/catalog/product/546145

5.3 Периодические издания

1. Справочник. Инженерный журнал: журнал - М.: Агентство "Роспечать", 2014. – N 1 – 11, 2015. - N 1– 9, 2. Полет: журнал. - М.: Агентство "Роспечать", 2015. - N 1-6.

5.4 Интернет-ресурсы

- 1. http://eqworld.ipmnet.ru/ru/library/physics/thermodynamics.htm Молекулярная физика, термодинамика, теория горения, EqWorld.
- 2. https://ru.coursera.org/learn/molekulyarnaya-fizika Физика в опытах. Часть 3. Колебания и молекулярная физика/

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Microsoft Windows.
- 2. Open Office/Libre Office свободный пакет программ, включающий в себя текстовый и табличный редакторы, редактор презентаций и другие офисные приложения.
- 3. Типовой комплект оборудования для лаборатории «Теплотехника и термодинамика» ММТП с программно-методическим обеспечением.

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещения для самостоятельной работы обучающихся оснащены комплектами ученической мебели, компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

Лекционная аудитория: компьютер, видеопроектор, экран.

Лаборатория термодинамики: типовой комплект оборудования для лаборатории «Теплотехника и термодинамика» ММТП.