Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Оренбургский государственный университет»

Кафедра общей физики

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.4.2 Практикум по решению физических задач»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>12.03.04 Биотехнические системы и технологии</u>

(код и наименование направления подготовки)

<u>Инженерное дело в медико-биологической практике</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы *Программа прикладного бакалавриата*

Квалификация <u>Бакалавр</u> Форма обучения *Очная*

Рабочая программа рассмотрена и утверждена на заседании кафедры

кафедра оощеи физики	нашенов	ание кафеары	
протокол № 2 от "24"	02 20/6r.		
Заведующий кафедрой	P-	*** Company of Control Will Art ***	
Кафедра общей физики	Hoonucs	Четверикова А.Г.	
наименование кафеары	Potoonics	расшифронка поотиси	
Исполнители:	0	N DP 2 -	
goveun	11-	Umberlunder DV.	
болжность	o ponuce	расинфровка подписи	
должность	подпись	расшифровка подписи	
СОГЛАСОВАНО: Председатель методической ко 12.03.04 Биотехнические систо коо но Заведующий отделом комплек	емы и технологии - пименование либо	Тоемиска расшифровка подписи	
nuvian nifon	1 11 11 11 11	Н.Н. Грицай	
Уполномоченный по качеству	факультета А.	Д. Стрекаловская	
. подп	uce (расшифровка подписи	

[©] Четверикова А.Г., 2016 © ОГУ, 2016

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины: формирование компетентного специалиста в области медикобиологической техники, владеющего базовыми методами анализа физических задач и обладающего практическими навыками решения и анализа основных типов заданий Федерального экзамена в сфере профессионального образования по физике.

Задачи: формирование у студента практических навыков применения законов физики для описания физических процессов и явлений; умения адекватно выбирать методы анализа физических задач в зависимости от характера исходных данных и требуемой точности расчета; развитие алгоритмической культуры и способности применять полученные знания и навыки.

2 Место дисциплины в структуре образовательной программы

Дисциплина является факультативной

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: Отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
Знать: основные понятия, явления и законы классической и	ОПК-2 способностью
современной физики; фундаментальные физические константы;	выявлять
методы теоретических и экспериментальных исследований в физике.	естественнонаучную
Уметь: применять физические законы для решения типовых задач и	сущность проблем,
осуществлять идеализацию физических явлений и процессов для по-	возникающих в ходе
строения математических моделей; оценивать и прогнозировать ре-	профессиональной
зультаты вычислений; пользоваться таблицами и справочниками;	деятельности, привлекать для
ориентироваться в потоке научно-технической информации.	их решения
Владеть: навыками работы в системе «АИССТ»; навыками решения	соответствующий физико-
физических задач; методами построения математических моделей и	математический аппарат
осуществления математической обработки результатов расчетов.	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 академических часов).

	Трудоемкость, академических часов		
Вид работы			
	2 семестр	всего	
Общая трудоёмкость	108	108	
Контактная работа:	34,25	34,25	
Лекции (Л)	18	18	
Практические занятия (ПЗ)	16	16	
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	
Самостоятельная работа:	73,75	73,75	
- самоподготовка (проработка и повторение лекционного материала и			

Вид работы		Трудоемкость,		
		академических часов		
	2 семестр	всего		
материала учебников и учебных пособий);				
- подготовка к практическим занятиям;				
- подготовка к рубежному контролю и т.п.				
Вид итогового контроля (зачет, экзамен, дифференцированный зачет)	зачет			

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов			3	
№	Наименование разделов	аудиторная внеа	внеауд.			
раздела	Pusheria Summa Pusheria	всего раоота па		работа		
			Л	П3	ЛР	paoora
1	Федеральный экзамен в сфере	12	2	-	-	10
	профессионального образования, тематическая					
	структура аттестационных измерительных					
	материалов					
2	Классификация физических задач, общие	12	2	2	-	8
	методы решения и типы математических					
	моделей					
3	Механика	12	2	2	-	8
4	Молекулярная физика и термодинамика	12	2	2	-	8
5	Электричество и магнетизм	12	2	2	-	8
6	Колебания и волны	12	2	2	-	8
7	Волновая и квантовая оптика	12	2	2	-	8
8	Квантовая физика и физика атомного ядра	12	2	2	-	8
9	Элементы ядерной физики и физики	12	2	2	-	8
	элементарных частиц					
	Итого:	108	18	16		74
	Всего:	108	18	16		74

4.2 Содержание разделов дисциплины

- №1. Федеральный экзамен в сфере профессионального образования, тематическая структура аттестационных измерительных материалов Методика проведения интернет- тестирования в сфере профессионального образования; структура аттестационных педагогических измерительных материалов по направлению подготовки «Информатика и вычислительная техника»; содержание дидактических единиц, типы заданий и методические рекомендации по работе в системе «Интернет-тренажеры в сфере образования».
- №2. Классификация физических задач, общие методы решения и типы математических моделей Идеализация физической задачи: введение идеальных физических объектов, критерии выделения существенных и несущественных связей, взаимодействий и процессов в физической системе. Классификация физических задач по существенным признакам: экспериментальные и теоретические задачи, поставленные и не поставленные задачи, прямые и обратные задачи. Этапы решения поставленной задачи: физический этап, математический этап и анализ решения. Понятие математической модели, типы математических моделей, формулирование математической задачи, упрощения и уточнения, методы построения и исследования решений, верификация моделей, контроль размерностей.
- №3. **Механика** Тематическая структура ДЕ «Механика». Экспериментальные основы механики. Решение баллистической задачи. Решение задачи о движении тела переменной массы, построение математической модели системы ракета газовая струя. Решение задачи о падении тела в поле тяготения при наличии силы сопротивления, пропорциональной скорости тела, установление закона изменения скорости и анализ решения.

- №4. **Молекулярная физика и термодинамика** Тематическая структура ДЕ «Молекулярная физика и термодинамика». Экспериментальные основы молекулярно кинетической теории. Решение задачи о нахождении наиболее вероятной скорости молекул по распределению Максвелла. Решение задачи о распределении молекул по высоте в изотермической атмосфере. Доказательство теоремы Карно с помощью Т-S диаграммы.
- №5. Электричество и магнетизм Тематическая структура ДЕ «Электричество и магнетизма». Математические основы теории электричества и магнетизма: векторная алгебра и элементы векторного анализа. Уравнения Максвелла и материальные уравнения. Уравнения Максвелла и основные законы электромагнетизма: закон сохранения заряда, закон электромагнитной индукции Фарадея, закон Кулона, закон Гаусса, закон Био-Савара-Лапласа (в интегральной форме), первый закон Кирхгофа, второй закон Кирхгофа. Уравнения Максвелла в симметричной форме. Граничные условия для электромагнитного поля: тангенциальные компоненты поля; нормальные компоненты поля; Вектор и теорема Пойнтинга. Накопление энергии в конденсаторе. Тепловые потери в проводнике. Теорема единственности решения уравнений Максвелла.
- №6. **Механические и электромагнитные колебания и волны** Тематическая структура ДЕ «Механические и электромагнитные колебания и волны». Решение задачи о свободных незатухающих колебаниях тела в шахте, «просверленной» по диаметру Земли. Анализ решения при наличии сил сопротивления. Решение задачи о сложении гармонических колебаний одного направления и колебаний, происходящих во взаимно перпендикулярных направлениях. Решение задачи о формировании плазменных волн в «холодной» бесстолкновительной неподвижной плазме.
- №7. **Волновая и квантовая оптика** Тематическая структура ДЕ «Волновая и квантовая оптика». Решение задачи о формировании колец Ньютона. Дифракционная решетка, условия формирования главных максимумов. Поглощение света, постановка задачи, вывод уравнения поглощения и его решение. Определение постоянных Стефана Больцмана и Планка из анализа теплового излучения накаленного тела.
- №8. **Квантовая физика и физика атома** Тематическая структура ДЕ «Квантовая физика и физика атома». Решение задачи об определении длины волн, соответствующих границе серии Лаймана, границе серии Бальмера и границе серии Пашена. Анализ результатов. Решение задачи о нахождении нормировочного коэффициента волновой функции заданного вида. Решение задачи о нахождении волновой функции частицы, находящейся в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками.
- №9. Элементы ядерной физики и физики элементарных частиц Тематическая структура ДЕ «Элементы ядерной физики и физики элементарных частиц». Модели атомного ядра. Ядерные реакции. Фундаментальные взаимодействия. Радиационная безопасность, расчет радиационной защиты.

4.3 Практические занятия (семинары)

№ занятия	№	Тема	Кол-во
лу занятия	раздела	1 CMa	часов
1	2	Принципы построения математических моделей физических	2
		процессов. Решение задачи о радиоактивном распаде.	
2	3	Решение типовых задач по теме «Механика»	2
3	4	Решение типовых задач по теме «Молекулярная физика и	2
		термодинамика»	
4	5	Решение типовых задач по теме «Электричество и магнетизм»	2
5	6	Решение типовых задач по теме «Колебания и волны»	2
6	7	Решение типовых задач по теме «Волновая и квантовая	2
		оптика»	
7	8	Решение типовых задач по теме «Квантовая физика и физика	2
		атомного ядра»	
8	9	Решение типовых задач по теме «Элементы ядерной физики и	2
		физики элементарных частиц»	

№ занятия	$N_{\underline{0}}$	Тема	Кол-во
	раздела	1 CMa	часов
		Итого:	16

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Физика: Механика. Механические колебания и волны. Молекулярная физика. Термодинамика: Учебное пособие / С.И. Кузнецов. 4-е изд., испр. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2014. 248 с.: 60х90 1/16. (п) ISBN 978-5-9558-0317-3. Режим доступа: http://znanium.com/bookread2.php?book=412940
- 3. Физика. Волновая оптика. Квантовая природа излучения. Элементы атомной и ядерной физики: Учеб. пос. / С.И.Кузнецов, А.М.Лидер 3-е изд., перераб. и доп. М.: Вузов. учеб.: НИЦ ИНФРА-М, 2015 212 с.: 60х90 1/16.(п) ISBN 978-5-9558-0350-0. Режим доступа: http://znanium.com/bookread2.php?book=438135
- 4. Назаров, В.Н. Олимпиадные задачи по общей физике : учебное пособие / В.Н. Назаров, Р.Р. Шафеев, И.Р. Каюмов. Москва ; Берлин : Директ-Медиа, 2015. 117 с. : ил. ISBN 978-5-4475-3790-6 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=272312

5.2 Дополнительная литература

- 1. **Волькенштейн В.С.** Сборник задач по общему курсу физики. СПб.: Спец. лит., 2002. 327с.
- 2. Физика : учеб. пособие / Н. П. Калашников, Н. М. Кожевников. 2-е изд., стер. СПб. : Лань, 2010. 150 с. : ил. (Интернет-тестирование базовых знаний). Библиогр.: с. 147. ISBN 978-5-8114-0925-9.
- 3. Положение о подготовке, организации и проведении Федерального Интернет-экзамена для выпускников бакалавриата (ФИЭБ) в 2016 году. Режим доступа: http://bakalavr.i-exam.ru
- 4. **Чакак, А.А.** Курс физики. Молекулярная физика / А.А. Чакак.-Оренбург: ГОУ ОГУ, 2009.-377 с. Электронный каталог ОГУ. Режим доступа http://artlib.osu.ru/web/books/metod_all/2743_20110926.pdf
- 5. **Чакак, А.А.** Курс физики. Электричество и магнетизм / А.А. Чакак. Оренбург: ГОУ ОГУ, 2006, 268 с. Электронный каталог ОГУ. Режим доступа http://artlib.osu.ru/web/books/metod_all/1121_20110805.pdf

5.3 Периодические издания

- 1. Оптика и спектроскопия: журнал. М.: Академиздатцентр "Наука" РАН, 2016-2018.
- 2. Квантовая электроника: журнал. М.: Агентство "Роспечать", 2016, 2017.
- 3. Успехи физических наук: журнал. М.: Агентство "Роспечать", 2016.
- 4. Информатика и образование : журнал. М. : Агентство "Роспечать", 2016.
- 5. Журнал экспериментальной и теоретической физики : журнал. М. : Академиздатцентр "Наука" РАН, 2016.

5.4 Интернет-ресурсы

http://mipt.ru/ Сайт Московского физико-технического института http://www.msu.ru Сайт Московского государственного университета им. М.В.Ломоносова <u>http://www.edu.ru/</u> Федеральный портал «Российское образование»

http://www.orenport.ru/ http://fepo.i-exam.ru/ Федеральный экзамен в сфере профессионального образования

http://i-exam.ru/node/ Единый портал интернет тестирования в сфере образования

http://training.i-exam.ru/ Интернет - тренажеры в сфере образования

https://www.lektorium.tv/mooc - «Лекториум»,

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Windows (В рамках лицензионного соглашения OVS-ES обеспечен весь компьютерный парк ОГУ).
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint) (В рамках лицензионного соглашения OVS-ES обеспечен весь компьютерный парк ОГУ) для подготовки текстовых документов, обработки экспериментальных результатов и демонстрации презентаций.
- 3. Springer [Электронный ресурс] : база данных научных книг, журналов, справочных материалов / компания Springer Customer Service Center GmbH . Режим доступа : https://link.springer.com/, в локальной сети ОГУ.

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду ОГУ.