Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Оренбургский государственный университет»

Кафедра химии

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б.1.Б.12 Химия»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>Микробиология</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация Бакалавр Форма обучения Очная

Рабочая программа рассмотрена и утверждена на заседании кафедры

Кафедра химии	
	наименование кафеоры
протокол № 5 от "В" ливар	20/ <u>6</u> r.
Заведующий кафедрой	
Кафедра химии 8 и	Е.В. Сальникова
	подпись расшифровка подписи
Исполнители:	
доцент	ун Е.А. Кунавина
	подрись расшифровка подписи
старший преподаватель	- fub С.А. Пешков
оолжность	подпись расшифровка подписи
Председатель методической комиссии г 06.03.01 Биология	
код наименование	личная ромпись расшифровка подписи
Заведующий отделом комплектования н	научной библиотеки
614	Н.Н. Грицай
numica poonuce	расинфровка подписи
Уполномоченный по качеству факульте	та
1	Е.С. Барышева
личная поопись	расшифровка поописи
№ регистрации	

© Кунавина Е.А. Пешков С.А., 2016 © ОГУ, 2016

1 Цели и задачи освоения дисциплины

Цели - обеспечить полное усвоение теоретических основ фундаментальных разделов химии; сформировать навыки выполнения лабораторных опытов по синтезу и исследованию физико-химических свойств неорганических и органических соединений.

Задачи:

- изучить основные понятия, стехиометрические законы химии, теоретические представления строения вещества, химические свойства соединений, закономерности протекания химических реакций и их типы; сформировать умения осуществлять химические опыты; овладеть методиками решения химических задач различных типов;
- изучить основные положения современной теоретической органической химии; принципы классификации органических соединений; правила систематической, рациональной и тривиальной номенклатуры; основные способы получения органических соединений различных классов, их физические и химические свойства, распространение в природе и применение; основные механизмы органических реакций, позволяющие объяснять протекание реакций, предсказывать направление реакций и условия их осуществления; методы выделения, очистки и идентификации органических соединений; качественные реакции на различные классы органических соединений и отдельные представители;
- сформировать умения составлять формулы органических соединений по названиям и называть вещества по структурным формулам согласно номенклатуре; определять принадлежность к классу органических соединений; приводить уравнения соответствующих химических реакций; использовать знания механизмов органических реакций для объяснения протекания реакций и предсказания условий их проведения; пользоваться химической литературой (справочной, научнопериодической и др.); проводить качественные реакции на различные классы органических соединений и их отдельные представители; проводить качественный элементный анализ органических соединений; выбирать методы выделения, очистки и идентификации органических соединений.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: *Б.1.Б.20 Химические процессы в молекулярной биологии, Б.1.В.ОД.10 Экология микроорганизмов и микробная биоремедиация*

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
<u>Знать:</u>	ОПК-2 способностью
основные понятия, терминологию, периодический закон и	использовать экологическую
периодическую систему химических элементов, количественные	грамотность и базовые
законы в химии, их формулировки и формульные выражения.	знания в области физики,
Уметь:	химии, наук о Земле и
применять правила и законы химии в расчетах исходных масс, объе-	биологии в жизненных
мов растворов и т.п. при проведении количественного анализа.	ситуациях; прогнозировать
Владеть:	последствия своей
правилами обращения с химическими веществами, посудой, прибо-	профессиональной

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
рами, а также с выбором наиболее безопасных и наименее трудоемких	деятельности, нести
методов анализа; базовыми количественными и качественными мето-	ответственность за свои
дами исследования окружающей действительности и обработки полу-	решения
ченной	
информации.	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 академических часов).

	Трудоемкость,				
Вид работы	академических часов				
	1 семестр	2 семестр	всего		
Общая трудоёмкость	72	72	144		
Контактная работа:	34,25	34,25	68,5		
Лекции (Л)	18	18	36		
Лабораторные работы (ЛР)	16	16	32		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5		
Самостоятельная работа:	37,75	37,75	75,5		
- самостоятельное изучение разделов (физические					
свойства углеводородов и их производных, применение					
отдельных представителей углеводородов и их					
производных, свойства полициклических ароматических					
углеводородов, двух- и трехатомные фенолы, свойства					
отдельных представителей углеводов);					
- самоподготовка (проработка и повторение лекционного					
материала и материала учебников и учебных пособий;					
- подготовка к лабораторным занятиям					
Вид итогового контроля (зачет, экзамен,	диф. зач.	диф. зач.			
дифференцированный зачет)	-	_			

Разделы дисциплины, изучаемые в 1 семестре

	Наименование разделов	Количество часов				
<u>№</u> раздела		всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Введение в химию	6	2	-	2	2
2	Термодинамика химических процессов	10	2	-	2	6
3	Химическая кинетика. Химическое равновесие	8	2	-	2	4
4	Растворы	16	4	-	4	8
5	Окислительно-восстановительные реакции	6	2	-	2	2
6	Гальванический элемент. Электроды 1-го и 2-го	12	2	-	2	8
	рода					
7	Электролиз. Законы Фарадея	7	2	-	1	4
8	Коррозия и защита металлов от коррозии	7	2	-	1	4
	Итого:	72	18		16	38

	Наименование разделов	Количество часов				
№ раздела		всего	аудиторная работа			внеауд.
			Л	ПЗ	ЛР	работа
1	Теоретические представления в органической химии	10	2	-	4	4
2	Предельные и непредельные углеводороды	8	2	-	2	4
3	Ароматические углеводороды	8	2	-	2	4
4	Галогенопроизводные углеводородов	6	2	-	-	4
5	Спирты и фенолы, простые эфиры	8	2	-	2	4
6	Альдегиды и кетоны	8	2	-	2	4
7	Карбоновые кислоты и их производные	8	2	-	2	4
8	Азотсодержащие органические соединения:	6	2	-	-	4
	амины и нитросоединения					
9	Биоорганические соединения	10	2	-	2	6
	Итого:	72	18		16	38
	Всего:		36		32	76

4.2 Содержание разделов дисциплины

1 семестр

Раздел 1 Введение в химию

Определение химии. Основные разделы химии. Понятия вещества и химической реакции. Классификация и номенклатура неорганических соединений. Газовые и стехиометрические законы. Химический эквивалент. Закон эквивалентов (закон Рихтера).

Раздел 2 Термодинамика химических процессов

Основные понятия и определения химической термодинамики. Первый закон термодинамики и его приложение к процессам в идеальном газе. Понятие теплового эффекта химической реакции. Стандартные энтальпии образования и сгорания веществ. Закон Гесса и следствия из него.

Направление химической реакции. Второй закон термодинамики. Энтропия как функция состояния системы. Изменение энтропии в некоторых процессах. Третий закон термодинамики. Абсолютные значения стандартных энтропий веществ. Критерии направленности самопроизвольного процесса в закрытой системы. Температурная зависимость стандартных энергии Гиббса, энтальпии и энтропии химическо реакции.

Раздел 3 Химическая кинетика. Химическое равновесие

Кинетика гомогенных химических реакций. Основные понятия и определения. Основной постулат химической кинетики. Кинетические уравнения и методы определения порядков химических реакций. Влияние температуры на скорость химических реакций. Правило Вант-Гоффа и уравнение Аррениуса. Энергия активации. Активированный комплекс. Особенности кинетики гетерогенных реакций. Влияние дисперсности на скорость протекания гетерогенных реакций. Диффузия. Конвекция. Закон Фика. Кинетический и переходный режимы гетерогенных реакций. Твердофазные реакции. Основы катализа. Основные понятия и определения. Механизм протекания каталитических (или ингибируемых) реакций. Число оборотов катализатора. Промоторы и каталитические яды. Гомогенный катализ. Гетерогенный катализ.

Виды, особенности и характеристики химического равновесия. Обратимые и необратимые химические реакции. Виды и особенности химического равновесия. Количественные характеристики химического равновесия. Закон Гульдберга — Вааге (закон действующих масс). Состояние истинного динамического химического равновесия. Принцип микроскопической обратимости. Влияние различных факторов на химическое равновесие. Особенности равновесий в гетерогенных системах. Принцип Ле Шателье — Брауна.

Раздел 4 Растворы

Общие свойства растворов. Термодинамические характеристики процесса образования растворов. Истинные растворы и дисперсные системы. Сольватация, сольват, сольватная оболочка и координационное число сольватации. Классификация растворов. Аэрозоли, пены, эмульсии и суспензии. Способы выражения содержания растворенного вещества в растворе (молярность, нормальность, моляльность, титр, массовая и мольная доли). Насыщенный раствор и растворимость. Полярные и неполярные растворители. Электролитическая диссоциация растворов электролитов. Степень диссоциации. Изотонический коэффициент. Сольватация неэлектролитов. Коллигативные свойства растворов: давление насыщенного пара летучего растворителя на раствором; закон Рауля, температуры кипения и замерзания растворов электролитов и неэлектролитов; эбулиоскопическая и криоскопическая постоянные; осмос, осмотическое давление и уравнение Вант-Гоффа.

Растворы электролитов. Диссоциация слабых электролитов. Константа диссоциации (ионизации) слабых кислот и оснований. Закон разбавления (разведения) Оствальда. Кажущаяся степень диссоциации сильных электролитов. Метод активностей Льюиса. Эффективная концентрация (активность). Коэффициент активности. Ионная сила. Уравнение Дебая-Хюккеля (предельный закон Дебая-Хюккеля). Ионные равновесия в водных растворах электролитов, автопротолиз воды. Ионное произведение воды. Водородный и гидроксильный показатель (рН и рОН). Гидролиз солей. Константа и степень гидролиза. Произведение растворимости.

Раздел 5 Окислительно-восстановительные реакции

Основные понятия и определения: окислитель, восстановитель, степень окисления и электроотрицательность. Правила определения степени окисления элемента в соединении. Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность. Классификация окислительно-восстановительных реакций: межмолекулярные, внутримолекулярные диспропорционирования и контрпропорционирования (конмутации). Составление ОВР методом ионно-электронного баланса (метод полуреакций). Влияние среды на механизм реакции.

Раздел 6 Гальванический элемент. Электроды 1-го и 2-го рода

Электродные процессы. Основные определения. Потенциалы электрохимической системы. Двойной электрический слой. Контактный и диффузионный потенциалы. Солевой мостик. Электродный потенциал. Уравнение Нернста. Стандартный водородный электрод. Уравнение Нернста для водородного электрода. Ряд стандартных электродных потенциалов металлов. Классификация электродов: элемент Вестона, газовые электроды, окислительно-восстановительный электрод, ионоселективные электроды. Химические и концентрационные гальванические элементы. Элемент Даниэля-Якоби. Термодинамика окислительно-восстановительных процессов. Практическое применение химических источников тока. Аккумулятор. Топливный элемент.

Раздел 7 Электролиз. Законы Фарадея

Электролиз с химическим разложением электрода. Электролиз с химическим разложением растворителя. Электролиз растворов солей металлов с растворимыми анодами, изготовленными из этих же металлов. Возможные катодные и анодные процессы при электролизе растворов электролитов. Законы Фарадея. Практическое применение электролиза. Электролитическое рафинирование. Гальванопластика. Гальваностегия. Кинетика электрохимических процессов. Скорость электродного процесса. Плотность тока обмена. Поляризационная кривая. Диффузионное перенапряжение. Уравнение Тафеля.

Раздел 8 Коррозия и защита металлов от коррозии

Коррозия металлов и сплавов. Классификация коррозионных сред, разрушений и процессов. Показатели скорости коррозии. Химическая (газовая) коррозия: виды и разновидности. Законы роста толщины оксидных пленок. Электрохимическая коррозия: причины и механизмы возникновения. Влияние различных факторов на скорость электрохимической коррозии. Защита металлов от коррозии. Рациональное конструирование. Легирование металлических материалов. Изменение состава и свойств коррозионной среды. Протекторная (анодная) защита. Защитные покрытия.

2 семестр

1 Теоретические представления в органической химии

Введение в органическую химию. Предмет, исторический очерк развития и значение органической химии. Теория строения органических соединений А.М. Бутлерова. Изомерия (структурная, конформационная, геометрическая, оптическая). Типы химических связей. Гибридизация. Взаимное влияние атомов в молекуле (индуктивный и мезомерный эффекты). Типы органических реакций и реагентов. Представления о механизме реакции. Классификация органических соединений.

2 Предельные и непредельные углеводороды

Алканы. Гомологический ряд, номенклатура, изомерия. Природные источники предельных углеводородов. Способы получения. Физические свойства. Строение (особенности σ-связей С-С и С-Н в молекулах алканов). Химические свойства (реакции радикального замещения: галогенирование, окисление, нитрование, сульфохлорирование, термические превращения). Стабильность алкильных радикалов. Термический и каталитический крекинг.

Алкены. Алкины. Алкадиены. Гомологические ряды, изомерия, номенклатура. Способы получения. Физические свойства. Особенности строения (природа двойной и тройной связей). Химические свойства алкенов. Электрофильное и радикальное присоединение. Реакции радикального аллильного замещения. Окисление (эпоксидирование, гидроксилирование, озонолиз, жесткое окисление). Химические свойства алкинов. Реакции электрофильного и нуклеофильного присоединения. Кислотные свойства алкинов. Окисление. Химические свойства сопряженных диенов. Циклоприсоединение. Олигомеризация и полимеризация непредельных углеводородов. Биоразлагаемые и бионеразлагаемые полимеры.

3 Ароматические углеводороды

Арены. Классификация. Признаки ароматичности. Отдельные представители. Изомерия, номенклатура. Природные источники ароматических соединений. Способы получения. Строение бензола. Химические свойства (реакции электрофильного замещения в ароматическом кольце). Ориентанты первого и второго рода, их влияние на реакционную способность и ориентацию электрофильного замещения. Понятие о многоядерных аренах с изолированными и конденсированными кольцами. Канцерогенность ароматических соединений.

4 Галогенопроизводные углеводородов

Классификация, изомерия, номенклатура. Способы получения. Физические и химические свойства. Гомолитические реакции. Конкурентность реакций нуклеофильного замещения S_N и элиминирования E. Факторы, влияющие на механизм реакции S_N и E.

5 Спирты и фенолы. Простые эфиры

Классификация спиртов. Одноатомные спирты. Гомологический ряд, изомерия, номенклатура. Способы получения. Физические свойства. Строение. Химические свойства (кислотно-основные, нуклеофильное замещение гидроксильной группы, окисление, внутримолекулярная и межмолекулярная дегидратация).

Биотрансформация алкоголя в организме человека.

Многоатомные спирты. Фенолы и нафтолы. Ароматические спирты. Токсичные свойства фенолов.

Классификация простых эфиров, изомерия, номенклатура. Способы получения. Физические и химические свойства (основность, расщепление галогеноводородами, α-галогенирование).

6 Альдегиды и кетоны

Изомерия и номенклатура. Способы получения. Физические свойства. Строение карбонильной группы. Сравнение реакционной способности альдегидов и кетонов. Химические свойства (реакции нуклефильного присоединения по карбонильной группе, окисление и восстановление, галоформная реакция, олигомеризация).

7 Карбоновые кислоты и их производные

Классификация. Нахождение в природе. Гомологический ряд *предельных монокарбоновых кислот*. Физические свойства. Строение карбоксильной группы. Химические свойства (кислотность, нуклеофильное замещение, декарбоксилирование). Получение и свойства функциональных производных карбоновых кислот: солей, сложных эфиров, ангидридов, галогенангидридов, амидов и нитрилов. Сравнение ацилирующей способности.

Дикарбоновые кислоты, ароматические и непредельные карбоновые кислоты: основные способы получения и свойства. Жиры и масла. Понятие о липидах. Биороль липидов.

Гидроксикислоты и оксокислоты. Классификация, изомерия, номенклатура. Основные представители. Оптическая изомерия гидроксикислот. Способы получения. Особенности строения. Физические и химические свойства.

8 Азотсодержащие органические соединения: амины и нитросоединения

Амины. Классификация, изомерия, номенклатура. Способы получения. Физические свойства. Строение. Химические свойства (кислотно-основные и нуклеофильные свойства, реакции с азотистой кислотой, электрофильное замещение в ароматических аминах).

Нитросоединения. Номенклатура. Способы получения. Физические и химические свойства. Токсичность азотсодержащих органических соединений.

9 Биоорганические соединения

Аминокислоты. Классификация, изомерия, номенклатура. Нахождение в природе. Основные представители. Способы получения. Физические и химические свойства (реакции по амино- и карбоксильной группам). Полипептиды. Белки. Цветные реакции на белки. Денатурация белка. Биологическое значение аминокислот и белков.

Углеводы. Классификация. Получение. Физические и химические свойства. Отдельные представители. Понятие о гликозидах. Восстанавливающие и невосстанавливающие дисахариды. Олигои полисахариды. Крахмал. Гликоген. Клетчатка. Биороль углеводов.

4.3 Лабораторные работы

№ ЛР	ЛР № Наименование лабораторных работ		Кол-во	
JNº JIP	раздела	ттаименование лаоораторных раоот		
1 семестр				
1	1	Техника безопасности. Знакомство с лабораторным оборудованием.	2	
2	1	Эквивалент. Закон эквивалентов. Определение эквивалента магния в	2	
2	4	реакции с серной кислотой.	2	
3	4	Кинетика химических реакций. Химическое равновесие	2	
4	5	Концентрация растворов. Приготовление растворов с заданной концентрацией	2	
5	5	Электролитическая диссоциация. Растворы электролитов.	2	
6	5	рН среды. Гидролиз солей.	2	
7	6	Окислительно-восстановительные реакции	2	
8	8	Электролиз. Коррозия металлов. Способы защиты от коррозии.	2	
		2 семестр		
1	1	Основные правила и организация работы в лаборатории органической химии. Знакомство с химической посудой и оборудованием.	2	
		Техника безопасности при работе в химической лаборатории органической химии.		
2	1	Качественный элементный анализ органических соединений.	2	
3	2	Непредельные углеводороды: получение и изучение физико-химических свойств.	2	
4	3	Ароматические углеводороды: изучение физико-химических свойств.	2	
5	5	Спирты и фенолы, простые эфиры: изучение физико-химических свойств.	2	
6	6	Альдегиды и кетоны: получение и изучение физико-химических свойств.	2	
7	7	Карбоновые кислоты: получение и изучение физико-химических свойств.	2	
8	8	Аминокислоты и углеводы: изучение физико-химических свойств.	2	
		Итого:	32	

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Глинка, Н. Л. Общая химия [Текст] : учебник для бакалавров / Н. Л. Глинка. 19-е изд., перераб. и доп. Москва : Юрайт, 2013. 901 с. (Бакалавр. Базовый курс). Прил.: с. 880-887. Библиогр.: с. 888. Имен. указ.: с. 889-890. Предм. указ.: с. 891-900. ISBN 978-5-9916-2715-3.
- 2. Грандберг, И. И.Органическая химия [Текст] : учебник для студентов высших учебных заведений, обучающихся по направлениям и специальностям агрономического образования / И. И. Грандберг, Н. Л. Нам.- 7-е изд., перераб. и доп. Москва : Дрофа, 2009. 607 с. ISBN 978-5-358-06141-5.

5.2 Дополнительная литература

- 1. Угай, Я. А. Общая и неорганическая химия [Текст] : учеб.для вузов / Я. А. Угай. М. :Высш. шк., 2000. 527 с. : ил ISBN 5-06-003751-7.
- 2. Иванов, В. Г. Органическая химия [Текст]: учеб. пособие для вузов / В. Г. Иванов, В. А. Горденко, О. Н. Гева.- 5-е изд., стер. М.: Академия, 2009. 624 с. (Высшее профессиональное образование). Библиогр.: с. 603-604. Алф. указ.: с. 605-617. ISBN 978-5-7695-5834-4.
- 3. Паршина, И. Н. Органическая химия [Текст] : практикум: учеб. пособие для вузов / И. Н. Паршина, Е. А. Строганова, Э. В. Строева. Оренбург : ГОУ ОГУ, 2007. Ч. 1 : Получение, свойства и качественный анализ органических соединений. 2007. 196 с.

5.3 Периодические издания

- 1. Журнал аналитической химии : журнал. М. :Академиздатцентр "Наука" РАН, 2016.
- 2. Органическая химия : реферативный журнал. М. : ВИНиТИ, 2008.
- 3. Химия и жизнь XXI век : журнал. М. : Агенство "Роспечать", 2015.
- 4. Журнал неорганической химии: журнал. М.: АРСМИ.
- 5. Химия и жизнь XXI век: журнал. М.: Агенство "Роспечать".

5.4 Интернет-ресурсы

- 1. SCOPUS [Электронный ресурс] : реферативная база данных / компания Elsevier. Режим доступа: https://www.scopus.com/, в локальной сети ОГУ.
- 2. ANCHEM.RU [Электронный ресурс] : Учебники, справочники, методики, журналы по аналитической химии. Режим доступа :www.anchem.ru/
- 3. AmericanChemicalSociety [Электронный ресурс] : база данных. Режим доступа: https://www.acs.org/content/acs/en.html, в локальной сети ОГУ.
- 4. RoyalSocietyofChemistry[Электронный ресурс] : полнотекстовая база данных / Королевское химическое общество Великобритании. Режим доступа : http://pubs.rsc.org/, в локальной сети ОГУ.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система MicrosoftWindows (В рамках лицензионного соглашения OVS-ES обеспечен весь компьютерный парк ОГУ).
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access). (В рамках лицензионного соглашения OVS-ES обеспечен весь компьютерный парк ОГУ) для подготовки текстовых документов, обработки экспериментальных результатов и демонстрации презентаций.
- 3. Автоматизированная интерактивная система сетевого тестирования АИССТ (зарегистрирована в РОСПАТЕНТ, Свидетельство о государственной регистрации программы для

ЭВМ №2011610456, правообладатель – Оренбургский государственный университет), режим доступа - http://aist.osu.ru.

6 Материально-техническое обеспечение дисциплины

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Для проведения лабораторных работ по курсу химии каждая лаборатория оборудована:

- 1) Вытяжным шкафом;
- 2) Рабочими столами;
- 3) Штативами для индивидуального набора реактивов и лабораторных принадлежностей;
- 4) Штативы с пробирками;
- 5) Набором оборудования общего пользования (эксикатор, кристаллизатор, промывалки, пинцет, тигельные щипцы, ерши для мытья посуды);
- 6) Наборами химической посуды;
- 7) Приборами (сушильный шкаф, муфельная печь, аналитические весы, РН-метр фотоэлектроколориметр,)
- 8) Таблицами и плакатами.
- 9) Набором необходимых химических реактивов.

Лаборатории оснащены оборудованием (холодильники, дефлегматоры, кристаллизаторы, эксикаторы, штативы), приборами (нагревательные приборы, термометры, водяные и масляные бани, прибор Жукова, пикнометр, рефрактометр, прибор для фракционной разгонки при атмосферном давлении, прибор для вакуумной перегонки, прибор для перегонки с водяным паром), химической посудой (пробирки, химические стаканы, колбы, мерная посуда, воронки, фарфоровые чашки) и химическими реактивами, необходимыми для проведения лабораторных опытов. Имеются шаростержневые модели молекул и образцы различных полимерных соединений. В лабораториях предусмотрены аптечка, , индивидуальные средства защиты, а также средства пожаротушения.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические указания для обучающихся по освоению дисциплины.