Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Оренбургский государственный университет»

Кафедра биофизики и физики конденсированного состояния

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«М.1.В.ДВ.1.2 Основы радиоспектроскопии»

Уровень высшего образования

МАГИСТРАТУРА

<u>Биохимическая физика</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академической магистратуры

> Квалификация <u>Магистр</u> Форма обучения <u>Очная</u>

Рабочая программа рассмотрена и утверждена на заседании кафедры

Кафедра биофизики и физики кон	денсированного	о состояния
	наименов	зание кафедры
протокол №6от "_05"	0220	018r.
Заведующий кафедрой		
Кафедра биофизики и физики кон наименование кафедры	денсированного подпись	о состояния В.Л. Бердинский Прринский
Исполнители: В 99КС		и вердинекий В.Л
/ должность	noghyter	расшифровка подписи
долженость.	подпись	расшифровка подписи
Председатель методической комис 03.04.02 Физика код наимен Научный руководитель магистерск	ование Ж.	м.г. Кучеренко расшифровка подписи
Заведующий отделом комплектова	ния научной бы	
личная пофпись	1	Н.Н. Грицай расшифровка подписи
Уполномоченный по качеству фак	W// A.J	Д. Стрекаловская
личная подпись	Je !	расшифровка подписи
№ регистрации 20130		

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

Цель преподавания дисциплины «Основы радиоспектроскопии» – формирование у студентов современных знаний о современных радиофизических методах исследования вещества в твердой и жидкой фазе.

Задачи:

- формирование представлений о физических основах магнитно-резонансных методов исследования вещества;
- знание основных методов радиоспектроскопических исследований: ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР);
- знание основных параметров спектров ЯМР и ЭПР и их связь со свойствами изучаемых объектов.
- умение анализировать спектры ЯМР И ЭПР;
- умение применять радиоспектроскопические методы (ЯМР и ЭПР) для решения научных и технических задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам (модулям) по выбору вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: *М.1.Б.2 Современные проблемы физики*, *М.1.Б.3* Специализированный физический практикум, *М.1.В.ОД.1 Молекулярная биофизика*, *М.1.В.ОД.2* Зондовые микроскопические методы исследования в биофизике, *М.1.В.ОД.3 Кинетика физико-химических процессов*, *М.1.В.ОД.5 Биотехнология*

Постреквизиты дисциплины: Отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
Знать:	ОК-3 готовностью к
Основные экспериментальные данные о свойствах спинов и	саморазвитию,
магнитных моментов электронов и ядер	самореализации,
Уметь:	использованию творческого
иметь навыки экспериментальной работы с приборами и	потенциала
оборудованием, предназначенным для исследования физических	
явлений в атомно-молекулярных системах	
Владеть:	
навыками планирования научного исследования, анализа получаемых	
результатов и формулировки выводов	
<u>Знать:</u>	ОПК-4 способностью
основные параметры спектров ЭПР и спектров ЯМР высокого	адаптироваться к изменению
разрешения и их связь со структурными особенностями исследуемых	научного профиля своей
образцов	профессиональной
Уметь:	деятельности,
анализировать спектры ЯМР высокого разрешения органических	социокультурных и
соединений	социальных условий
Владеть:	деятельности
фундаментальной базой знаний, навыков и умений при решении	
конкретных задач, связанных с применением методов спектроскопии	

Планируемые результаты обучения по дисциплине, характеризующие	Формируемые компетенции
этапы формирования компетенций	т орингручива поинтетации
ЯПЕ и ЧМК	
Знать:	ПК-2 способностью свободно
методы анализа спектров ЯМР и ЭПР	владеть разделами физики,
Уметь:	необходимыми для решения
анализировать спектры ЭПР; - использовать полученную	научно-инновационных
информацию дл анализа строения и свойств исследуемых веществ	задач, и применять
Владеть:	результаты научных
теоретическими навыками анализа спектров ЭПР и ЯМР жидкостей и	исследований в
твердых тел и практическими навыками экспериментального	инновационной деятельности
использования спектроскопии ЯМР и ЭПР	
<u>Знать:</u>	ПК-3 способностью
Основные методы в радиоспектроскопических исследований:	принимать участие в
ядерный магнитный резонанс и электронный магнитный резонанс	разработке новых методов и
Уметь:	методических подходов в
навыки экспериментальной работы с приборами и оборудованием,	научно-инновационных
предназначенным для исследования физических явлений в атомно-	исследованиях и инженерно-
молекулярных системах.	технологической
Владеть:	деятельности
навыками представления и продвижения результатов	
интеллектуальной деятельности	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 академических часов).

	Трудоемкость,			
Вид работы	академических часов			
	3 семестр	всего		
Общая трудоёмкость	180	180		
Контактная работа:	34,25	34,25		
Лекции (Л)	18	18		
Практические занятия (ПЗ)	16	16		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25		
Самостоятельная работа:	145,75	145,75		
- самоподготовка (проработка и повторение лекционного материала и				
материала учебников и учебных пособий;				
- подготовка к практическим занятиям;				
- подготовка к рубежному контролю и т.п.)				
Вид итогового контроля (зачет, экзамен, дифференцированный	зачет	·		
зачет)				

Разделы дисциплины, изучаемые в 3 семестре

		Количество часов				
№ раздела	Наименование разделов		аудиторная работа			внеауд. работа
			Л	П3	ЛР	раоота
1	Физические свойства спинов и магнитных	22	2			18
	моментов электронов и ядер.					
2	Кинетическая теория магнитного резонанса.	17	2			14

	Наименование разделов	Количество часов				
№ раздела		всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
3	Основные характеристики электронной и	19	2			16
	ядерной намагниченности.					
4	Уравнение Блоха.	22	2	4		18
5	Импульсные методы магнитного резонанса.	14	1	2	12	
6	Экспериментальные методы	12	1	2		10
	радиоспектроскопии.					
7	Принципы радиоспектроскопии.	20	2	2		16
8	Химическая радиоспектроскопия.	22	2	2		18
9	Квантовая теория магнитного резонанса.	14	2	2		10
10	Теория магнитной релаксации.	18	2	2		14
	Итого:	180	18	16		146
	Bcero:	180 18 16				146

4.2 Содержание разделов дисциплины

- №1 Физические свойства спинов и магнитных моментов электронов и ядер. *Спин и его свойства. Магнитные моменты ядер. Взаимодействие с магнитным полем. Зеемановская энергия.*
- №2 Кинетическая теория магнитного резонанса. *Система зеемановских уравнений*. *Индуцированные резонансные переходы*. *Релаксация*.
- №3 Основные характеристики электронной и ядерной намагниченности. *Намагниченность*. *Магнитная восприимчивость парамагнетиков*. Движение вектора намагниченности в постоянном магнитном поле. Прецессия. Вращающаяся система координат (ВСК).
- №4 Уравнение Блоха. Вывод уравнений Блоха. Переход к ВСК. Частные решения. Стационарные решения. Восприимчивость. Анализ кривых поглощения и дисперсии. Эффекты насыщения.
- №5 Импульсные методы магнитного резонанса. Поведение намагниченности в импульсных полях. Спиновое эхо. Импульсные последовательности. Измерения времен релаксации. Фурьеспектроскопия. Двумерная спектроскопия ЯМР.
- №6 Экспериментальные методы радиоспектроскопии. Принципы регистрации магнитного резонанса. Стационарные и импульсные методы. Основные элементы спектрометров ЯМР. Основные элементы спектрометров ЭПР. Современные спектрометры и их производители.
- №7 Принципы радиоспектроскопии. Параметры спектров ЯМР высокого разрешения. Спектроскопия ЯМР широких линий в твердых телах. Спектроскопия ЭПР. Основные параметры спектров ЭПР. Физические основы магнитно-резонансной томографии.
- №8 Химическая радиоспектроскопия. *Химические сдвиги и константы спин-спинового* взаимодействия. *Константы сверхтонкого взаимодействия и g-факторы*.
- №9 Квантовая теория магнитного резонанса. *Матрица плотности*, населенности и когерентности. Редуцированная матрица плотности. Кинетическая теория матрицы плотности.
- №10 Теория магнитной релаксации. *Механизмы спиновых взаимодействий. Релаксационные механизмы. Квантовое описание магнитной релаксации.*

4.3 Практические занятия (семинары)

№ занятия	№	Тема	Кол-во
742 Summinn	раздела	1 Civit	часов
1	1	Уравнения Блоха. Динамика спиновой намагниченности в импульсных радиочастотных полях. Стационарное возбуждение магнитного резонанса.	
2	2	Экспериментальная регистрация электронного парамагнитного	2

№ занятия	№ раздела	Тема	Кол-во часов
		резонанса. Основные элементы спектрометров ЯМР. Основные элементы спектрометров ЭПР.	
3	3	Спектры ЭПР радикалов в твердых телах. Спиновый гамильтониан анизотропных взаимодействий. Электрон-ядерные взаимодействия.	2
4	4	Особенности спектров ЭПР неорганических радикалов.	2
5	5	Основные особенности спектров ЭПР ионов переходных металлов. g-тензор ионов с $S=1/2$.	2
6	6	Метод спиновых зондов	2
7	7	Регистрация радикалов в биологических объектах.	2
		Итого:	16

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Астапенко, В. А. Взаимодействие излучения с атомами и наночастицами [Текст] : учеб. пособие / В. А. Астапенко. Долгопрудный : Интеллект, 2010. 496 с. : ил. (Физтеховский учебник). Библиогр. в конце гл. ISBN 978-5-91559-083-9.
- 2. Кугушев, А. М. Основы радиоэлектроники. Электродинамика и распространение радиоволн [Текст] : учеб. пособие для вузов / А. М. Кугушев, Н. С. Голубева, В. Н. Митрохин. М. : Изд- во МГТУ им. Н. Э. Баумана, 2001. 368 с. ISBN 5-7038-1728-5.

5.2 Дополнительная литература

- 1. Физика. Химия [Электронный ресурс] / РОСМЭН-ПРЕСС, 2007. http://biblioclub.ru/index.php?page=book&id=139781
- 2. Шпаков П. С., Попов В. Н. Статистическая обработка экспериментальных данных: учебное пособие М.: Издательство Московского государственного горного университета, 2003 http://biblioclub.ru/index.php?page=book&id=100166/
- 3. Сопротивление материалов [Текст] : учеб. для вузов / под ред. Г. С. Писаренко.- 4-е изд., перераб. и доп. Киев : Вища шк., 1979. 696 с
- 4. Черняев, А. П. Взаимодействие ионизирующего излучения с веществом [Текст] : учеб. пособие / А. П. Черняев. М. : Физматлит, 2004. 152 с. : ил. Библиогр.: с. 149-151. Предм. указ.: с. 151-152. ISBN 5-9221-0432-2.

5.3 Периодические издания

- 1. Теоретическая и математическая физика. Журнал.
- 2. Журнал экспериментальной и теоретической физики.
- 3. Успехи физических наук. Журнал. МАИК. Наука.
- 4. Оптика и спектроскопия. Журнал. МАИК. Наука.
- 5. Журнал технической физики. МАИК. Наука.

5.4 Интернет-ресурсы

- https://openedu.ru/course/
 «Открытое образование», Каталог курсов, МООК:
 «Электродинамика»;
- https://www.coursera.org/learn/python «Coursera», MOOK: «Programming for Everybody (Getting Started with Python)»;
- https://universarium.org/catalog «Универсариум», Курсы, МООК: «Дополнительная общеобразовательная программа по физике»;
- https://www.lektorium.tv/mooc «Лекториум», MOOK: «Небесная механика»
- Электронная библиотека Российской государственной библиотеки (РГБ) http://elibrary.rsl.ru/.
- Электронная библиотека IQlib (образовательные издания, электронные учебники, справочные и учебные пособия) http://www.iqlib.ru/.
- Электронная библиотека Санкт-Петербургского государственного политехнического университета (методическая и учебная литература, создаваемая в электронном виде авторами СПбГТУ по профилю образовательной и научной деятельности университета) http://www.unilib.neva.ru/rus/lib/resources/elib/.
- Научная библиотека МГУ имени М.В. Ломоносова http://nbmgu.ru/.
- Электронные учебники и журналы по физике http://e.lanbook.com.
- Книги для студентов и аспирантов http://abitur.su/studentov.
- Электронные учебные пособия http://www.intuit.ru/.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Перечень лицензионного программного обеспечения

- 1. Операционная система Microsoft Windows
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, Outlook, Publisher, Access)
 - 3. Приложение для создания диаграмм Microsoft Visio

Профессиональные базы данных

- 1. SCOPUS [Электронный ресурс] : реферативная база данных / компания Elsevier. Режим доступа: https://www.scopus.com/, в локальной сети ОГУ.
- 2. Springer [Электронный ресурс] : база данных научных книг, журналов, справочных материалов / компания Springer Customer Service Center GmbH . Режим доступа : https://link.springer.com/, в локальной сети ОГУ.
- 3. Web of Science [Электронный ресурс]: реферативная база данных / компания Clarivate Analytics. Режим доступа: http://apps.webofknowledge.com/, в локальной сети ОГУ.

Информационные справочные системы

- 1. Законодательство России [Электронный ресурс] : информационно-правовая система. Режим доступа : http://pravo.fso.gov.ru/ips/, в локальной сети ОГУ.
- 2. Консультант Плюс [Электронный ресурс] : справочно-правовая система / Компания Консультант Плюс. Электрон. дан. Москва, [1992–2016]. Режим доступа : в локальной сети ОГУ \\fileserver1\!CONSULT\cons.exe
- 3. Гарант [Электронный ресурс] : справочно-правовая система / НПП Гарант-Сервис. Электрон. дан. Москва, [1990–2016]. Режим доступа \\fileserver1\\GarantClient\\garant.exe в локальной сети ОГУ.

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические указания для обучающихся по освоению дисциплины.