Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Оренбургский государственный университет»

Кафедра прикладной математики

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.Б.10.3 Математический анализ»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки 27.03.04 Управление в технических системах (код и наименование направления подготовки)

<u>Управление и информатика в технических системах</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация <u>Бакалавр</u> Форма обучения <u>Очна</u>я

Рабочая программа рассмотрена и утверждена на заседании кафедры

наименование кафедры	
протокол № 6 от "24" мекоре 20 18г.	. 5
Заведующий кафедрой Кафедра прикладной математики наименование кафедры подпись подпись подпись подпись	
Исполнители: Профессор кафедры прикладная математика оолжность подпись расшифровка подписи	
должность подпись расшифровка подписи	
СОГЛАСОВАНО: Председатель методической комиссии по направлению подготовки 27.03.04 Управление в технических системах код наименование личная подуцсь расшифровка подписи	
Заведующий отделом комплектования научной библиотеки ———————————————————————————————————	
Уполномоченный по качеству факультета	
личная подпись расшифровка подписи № регистрации	BARROLOUINESSO.

[©] Полкунов Ю.Г., 2018 © ОГУ, 2018

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

Получение студентами фундаментальных знаний по математическому анализу, необходимых при использовании их в профессиональной деятельности.

Задачи:

- изучение основных определений, теорем и методов математического анализа;
- формирование умений в области практического применения методов математического анализа;
- приобретение практического опыта применения математических методов в профессиональной деятельности.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.10.2 Алгебра и геометрия

Постреквизиты дисциплины: *Б.1.Б.10.1 Теория вероятностей и математическая статистика, Б.1.Б.18 Базы данных, Б.1.В.ОД.4 Теория и технология программирования*

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции
Знать:	ОПК-1 способностью
Основные понятия математического анализа	представлять адекватную
Уметь:	современному уровню
Применять фундаментальные знания в области математического	знаний научную картину
анализа	мира на основе знания
Владеть:	основных положений,
Навыками использования задач математического анализа в различных	законов и методов
областях знаний	естественных наук и
	математики
<u>Знать:</u>	ОПК-2 способностью
Методы математического анализа для решения прикладных задач	выявлять
Уметь:	естественнонаучную
Применять методы математического анализа для решения	сущность проблем,
прикладных задач	возникающих в ходе
Владеть:	профессиональной
Навыками применения методов математического анализа для	деятельности, привлекать для
решения прикладных задач	их решения
	соответствующий физико-
	математический аппарат

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 11 зачетных единиц (396 академических часов).

		Трудое	мкость,		
Вид работы	академических часов				
	1 семестр	2 семестр	3 семестр	всего	
Общая трудоёмкость	144	144	108	396	
Контактная работа:	60,25	60,25	35,25	155,75	
Лекции (Л)	34	34	18	86	
Практические занятия (ПЗ)	26	26	16	68	
Консультации			1	1	
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,25	0,75	
Самостоятельная работа:	83,75	83,75	72,75	240,25	
- выполнение индивидуального творческого					
задания (ИТЗ);					
- выполнение расчетно-графического					
задания (РГЗ);					
- написание реферата (P);					
- написание эссе (Э);					
- самоподготовка (проработка и					
повторение лекционного материала и					
материала учебников и учебных пособий;					
- подготовка к практическим занятиям;					
- подготовка к коллоквиумам;					
- подготовка к рубежному контролю и т.п.)					
Вид итогового контроля (зачет, экзамен,	диф. зач.	зачет	экзамен		
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 1 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	-	аудиторная работа		внеауд.
			Л	П3	ЛР	работа
1	Введение в математический анализ	37	12	8		17
2	Дифференциальное исчисление функций одной	35	8	6		21
	переменной					
3	Применение дифференциального исчисления	14	2	2		10
	для исследования функций и построения их					
	графиков					
4	Интегральное исчисление функций одной пере-	58	12	10		36
	менной					
	Итого:	144	34	26		84

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				3
№ раздела	ела Наименование разделов всего работа			внеауд.		
			Л	ПЗ	ЛР	работа
5	Функции нескольких переменных	22	4	6		12

	Наименование разделов	Количество часов				
№ раздела		всего	аудиторная работа			внеауд.
-			Л	П3	ЛР	работа
6	Числовые и функциональные ряды	36	8	6		12
7	Кратные и криволинейные интегралы	36	8	6		22
8	Дифференциальные уравнения	50	14	8		28
	Итого:	144	34	26		84

Разделы дисциплины, изучаемые в 3 семестре

№ раздела		Количество часов				
	Наименование разделов	всего	аудиторная работа			внеауд. работа
			Л	П3	ЛР	раоота
9	Ряды Фурье	51	9	8		34
10	Теория поля	57	9	8		34
	Итого:		18	16		74
	Bcero:	396	86	68		242

4.2 Содержание разделов дисциплины

1 Введение в математический анализ

Основные понятия теории множеств. Операции над множествами. Множество действительных чисел, числовые промежутки, окрестность точки. Числовые последовательности; предел числовой последовательности; основные свойства и признаки существования предела; предельные точки; предел монотонной последовательности; число «е», верхний и нижний пределы; критерий Коши существования предела.

Предел функции в точке; свойства пределов; односторонние пределы; замечательные пределы; бесконечно малые и бесконечно большие функции и последовательности; эквивалентные бесконечно-малые величины, их свойства; сравнение бесконечно малых величин.

Непрерывные функции: локальные свойства непрерывных функций; непрерывность функции от функции; классификация точек разрыва; ограниченность функции, непрерывной на отрезке; существование наибольшего и наименьшего значений; прохождение через все промежуточные значения; монотонные функции, существование и непрерывность обратной функции, непрерывность элементарных функций.

2 Дифференциальное исчисление функций одной переменной

Дифференциалы и производные: дифференцируемость функции в точке; производная в точке, дифференциал и их геометрический смысл; механический смысл производной; правила дифференцирования; дифференцирование сложных, неявных и параметрически заданных функций; производные и дифференциалы высших порядков.

Основные теоремы дифференциального исчисления и их приложения: теоремы Ролля, Лограранжа и Коши о конечных приращениях. Правило Лопиталя.

3 Применение дифференциального исчисления для исследования функций и построения их графиков

Признак монотонности функции, экстремумы функции, нахождение наибольшего и наименьшего значений функции, дифференцируемой на отрезке; выпуклость функции, точки перегиба; асимптоты графика функций. Общая схема исследования функции и построения ее графика.

4 Интегральное исчисление функцийодной переменной

Неопределенный интеграл: первообразная функция, неопределенный интеграл и его основные свойства; таблица интегралов; методы интегрирования; интегрирование рациональных функций; интегрирование некоторых простейших иррациональных функций; интегрирование тригонометрических функций.

Определенный интеграл: задачи, приводящие к понятию определенного интеграла; свойства определенного интеграла, теорема о среднем значении; дифференцирование по переменно-

му верхнему пределу; существование первообразной от непрерывной функции; формула Ньютона - Лейбница; методы интегрирования; геометрические и механические приложения; несобственные интегралы 1 и 2 рода.

5 Функции нескольких переменных

Функции многих переменных: пределы, непрерывность; свойства непрерывных функций; дифференциал и частные производные функции многих переменных; производная по направлению; градиент; достаточное условие дифференцируемости; касательная плоскость и нормаль к поверхности; дифференцирование сложных функций; частные производные высших порядков;

экстремум функции двух переменных.

6 Числовые и функциональные ряды

Числовые ряды: сходимость и сумма числового ряда; критерий Коши; знакопостоянные ряды; сравнение рядов; признаки сходимости Даламбера, Коши, интегральный признак сходимости; признак Лейбница; абсолютная и условная сходимость; перестановка членов абсолютно сходящегося ряда; теорема Римана; операции над рядами. Функциональные последовательности и ряды, равномерная сходимость; признаки равномерной сходимости; теорема о предельном переходе; теоремы о непрерывности, почленном интегрировании и дифференцировании; степенные ряды, радиус сходимости, равномерная сходимость и непрерывность суммы степенного ряда; почленное интегрирование и дифференцирование степенных рядов; ряд Тейлора; разложение элементарных функций в степенные ряды; оценка с помощью формулы Тейлора погрешности при замене функции многочленом; применение рядов к приближенным вычислениям.

7 Кратные и криволинейные интегралы

Двойной интеграл: его геометрическая интерпретация и основные свойства; приведение двойного интеграла к повторному; замена переменных в двойном интеграле; площадь поверхности; механические и физические приложения двойных интегралов.

Криволинейные интегралы; формула Грина; интегралы по поверхности; формула Остроградского; элементарная формула Стокса; условия независимости криволинейного интеграла от формы пути.

8 Дифференциальные уравнения

Основные понятия. Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков, допускающие понижение порядка. Дифференциальные уравнения второго порядка с постоянными коэффициентами. Линейные неоднородные дифференциальные уравнения.

9 **Ряды Фурье**. Ортогональная система функций. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя. Замкнутость тригонометрической системы функций. Тригонометрический ряд Фурье. Интегральное представление его частичной суммы. Ряды Фурье для четных и нечетных функций. Простейшие свойства тригонометрических рядов. Принцип локализации Римана. Преобразование Фурье. Интеграл Фурье.

10 Теория поля

Векторное поле. Дифференциальные уравнения векторных линий. Поток векторного поля. Способы вычисления потока. Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского. Дивергенция векторного поля. Соленоидальное поле. Линейный интеграл в векторном поле. Циркуляция векторного поля. Ротор (вихрь) векторного поля. Теорема Стокса. Независимость линейного интеграла от пути интегрирования. Формула Грина. Потенциальное поле. Признаки потенциального поля. Вычисление линейного интеграла в потенциальном поле.

4.3 Практические занятия (семинары)

№ занятия	№ раздела	Тема	Кол-во часов
		Семестр 1	
1	1	Множество, его элементы. Равенство двух множеств.	1
		Подмножества. Пустое множество. Операции над	

№ занятия	№ раздела	Тема	Кол-во часов
	I wante	множествами. Свойства операций над множествами. Числовые множества. Окрестность точки.	
2	1	Функция, область ее определения, способы задания. Основные элементарные функции, их свойства и графики.	1
3	1	Предел последовательности. Число . Предел числовой функции. Порядок бесконечно малой функции.	2
4	1	Замечательные пределы. Основные эквивалентности бесконечно малых.	2
5	1	Непрерывность функции. Точки разрыва. Их классификация. Общие свойства функций, непрерывных на отрезке. Непрерывность элементарных функций.	2
6	2	Дифференцирование сложных функций. Дифференциал функции. Производные и дифференциалы высших порядков.	2
7	2	Производные функций, заданных параметрически.	1
8	2	Геометрический и физический смысл производной	1
9	2	Правило Лопиталя.	2
10	3	Применение дифференциального исчисления к исследованию функций. Полное исследование функции и построение ее графика.	2
11	4	Первообразная функция. Неопределенный интеграл, его свойства. Таблица интегралов. Метод замены переменной. Интегрирование по частям.	2
12-13	4	Интегрирование рациональных функций.	2
14	4	Интегрирование тригонометрических функций.	
15	4	Методы интегрирования в определенном интеграле.	2
16	4	Приложения определенного интеграла.	1
17	4	Несобственные интегралы.	2
17	'	Итого:	26
		Семестр 2	
1	5	Предел и непрерывность функции многих переменных. Частные производные. Дифференцирование сложной функции.	2
2	5	Частные производные высших порядков. Дифференциалы высших порядков. Дифференцирование неявных функций.	2
3	5	Производная по направлению. Градиент. Экстремум функции двух переменных.	2
4	6	Сумма членов бесконечной геометрической прогрессии. Расходимость гармонического ряда. Необходимый признак сходимости. Ряды с неотрицательными членами. Признаки сравнения, Даламбера, радикальный и интегральный признаки Коши.	2
5	6	Абсолютно и условно сходящиеся ряды. Знакочередующиеся ряды. Признак Лейбница.	1
6	6	Признаки равномерной сходимости. Непрерывность суммы функционального ряда. Почленный переход к пределу. Почленное интегрирование функционального ряда. Почленное дифференцирование рядов.	1
7	6	Степенные ряды. Радиус сходимости. Ряд Тейлора. Разложение в степенной ряд функций. Приложение рядов к приближенным вычислениям.	7
8	7	Вычисление кратных интегралов.	1
9	7	Вычисление криволинейных интегралов первого рода.	2

№ занятия	No	Тема	Кол-во
л⊻ запятия	раздела	1 CMa	часов
10	7	Вычисление криволинейных интегралов второго рода.	2
11	7	Приложения кратных и криволинейных интегралов.	1
12	8	Дифференциальные уравнения первого порядка: уравне-	2
		ния с разделяющимися переменными, однородные ДУ.	
13	8	Дифференциальные уравнения первого порядка: линей-	2
		ные уравнения, уравнения Бернулли, уравнения в полных диф-	
		ференциалах.	
14	8	Дифференциальные уравнения высших порядков, до-	1
		пускающие понижение порядка.	
15	8	Дифференциальные уравнения второго порядка с посто-	1
		янными коэффициентами.	
16-17	8	Линейные неоднородные дифференциальные уравнения.	2
		Метод вариации произвольных постоянных. Интегрирование	
		ЛНДУ с правой частью специального вида.	
		Итого:	26
		Семестр 3	
1	9	Тригонометрический ряд Фурье, его равномерная сходимость	2
2	9	Представление тригонометрическим рядом Фурье 2π	2
		- периодических функций	
3	9	Представление тригонометрическим рядом Фурье $2l$ -	2
		периодических функций, четных и нечетных функций, функ-	
		ций, заданных на произвольном отрезке $[-l;l]$.	
4	9	Интеграл Фурье. Преобразование Фурье.	2
5	10	Поток векторного поля. Поток вектора через замкнутую	4
	10	поверхность.	,
6	10	Циркуляция векторного поля. Ротор векторного поля.	4
	10	Теорема Стокса.	•
		Итого:	16
		Всего:	68

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Максименко, В.Н. Курс математического анализа : учебное пособие / В.Н. Максименко, А.Г. Меграбов, Л.В. Павшок. Новосибирск : НГТУ, 2011. Ч. 2. 411 с. ISBN 978-5-7782-1746-1 ; То же [Электронный ресурс]. -
- URL: http://biblioclub.ru/index.php?page=book&id=228792(17.11.2015).
- 2. Архипов, Г.И. Лекции по математическому анализу: учеб./Г.И.Архипов, В.А.Садовничий, В.Н. Чубариков, -3-е изд.-М.: Дрофа, 2008.-640 с.

5.2 Дополнительная литература

- 1. Кудрявцев, Л.Д. Курс математического анализа [Текст]: [в 3 т.]: учеб.для вузов/ Л.Д. Кудрявцев. М: Дрофа, т.1- 2006. 702 с., т.2.- 2004. 720 с., т.3 2006. 351 с.
- 2. Зорич, В.А. Математический анализ: университетский учеб. для студентов физикоматематических спец./В.А.Зорич.-М.: МЦМНО, ч.1. -2001.-670 с., ч.2.--2002.-800 с.

- 3. Ильин В.А., Позняк Э.Г. Основы математического анализа, ч.1, М.: Наука, М.: Физматлит, 2002 г.
- 4. Ким В.С. Курс математического анализа: учебное пособие, Оренбург: ИПК ГОУ ОГУ, $2006.-219~\mathrm{c}$.
- 5. Демидович Б.П. Сборник задач и упражнения по математическому анализу: учебное пособие/ Б.П.Демидович.- АСТ, Астрель, 2007.-638 с.
- 6. Данилов, Ю.М. Математика: Учебное пособие / Ю.М. Данилов, Н.В. Никонова, С.Н. Нуриева; Под ред. Л.Н. Журбенко, Г.А. Никоновой. М.: НИЦ ИНФРА-М, 2014. 496 с. ISBN 978-5-16-010118-7. Режим доступа: http://znanium.com/bookread2.php?book=471655.
- 7. Незнамова, М.А. Функции комплексного переменного. Элементы операционного исчисления [Электронный ресурс] : учебное пособие / М.А. Незнамова; М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Оренбург. гос. ун-т". Электрон. текстовые дан. (1 файл: Кb). Оренбург : ОГУ, 2013. -Adobe Acrobat Reader 6.0.

8.Данко, П.Е. Высшая математика в упражнениях и задачах [Текст] : в 2 ч.: учеб. пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова . - 6-е изд. - М. : Оникс 21 век Мир и образование, 2003. Ч. 1.-304 с., 2003. Ч. 2.-416 с.

5.3 Периодические издания

Доклады Академии наук: журнал.- М.: Академиздатцентр «Наука» РАН, 2018.

5.4 Интернет-ресурсы

https://www.coursera.org/ - «Coursera»;

https://openedu.ru/ - «Открытое образование»;

https://universarium.org/ - «Универсариум»;

https://www.edx.org/ - «EdX»;

https://www.lektorium.tv/ - «Лекториум»;

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Операционная система Microsoft Windows

Wolfram Mathematica for the Classroom Educational Bundled

CorelDRAW Graphics Suite X3

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические указания для обучающихся по освоению дисциплины.