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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 
 

Актуальность темы исследования. Известно, что большинство ответственных 

деталей и узлов оборудования, функционирующего на дожимных компрессорных 

станциях нефтегазовых предприятий России выполнены из материалов и по 

технологиям зарубежных производителей. В условиях сложившихся 

внешнеэкономических отношений, приобретение и эксплуатация данного вида 

изделий затруднительна.  

По результатам реверс-инжиниринговых изысканий отработанных штоков 

компрессоров Dresser-Rand, CPI Compressor Products International и Cameron 

Compression System, определена необходимость разработки рациональной технологии 

упрочения подобных деталей с обоснованием влияния режимов нанесения покрытий 

на структуру и фазовый состав рабочей поверхности, с целью обеспечения 

безаварийной работы изделий в конкретных условиях эксплуатации. 

В нефтегазовом машиностроении газотермические методы нанесения покрытий 

являются технологически прогрессивными и экономически эффективными в рамках 

улучшения эксплуатационных характеристик ответственных деталей и узлов 

оборудования. Современный уровень развития данной области характеризуется, как 

широким спектром материалов функционального назначения, так и разработкой 

надежного технологического оборудования и оптимальных параметров его 

использования. Однако, несмотря на достигнутые результаты, вопросы влияния 

гранулометрического и химического состава исходных порошков, а также 

комплексное воздействие параметров напыления на микроструктуру, фазовый состав, 

физико-механические свойства и напряженное состояние формируемого слоя для 

различных практических применений остаются недостаточно изученными, что 

определяет актуальность настоящего исследования.   

Степень разработанности темы исследования. Способ восстановления и 

упрочнения рабочих поверхностей ответственных деталей методом нанесения 

газотермических покрытий был по достоинству оценен в производственной сфере, что 

нашло отражение в работах Ю.С. Коробова, А.Ю. Павлова и других исследователей. 

Значимые для теории и практики результаты исследований в области нанесения 

газотермических покрытий на поверхность металлов и сплавов приведены в работах 

отечественных (Р.М. Нуреев, С.И. Яресько и т.д.) и зарубежных (S. Kuroda, C. Moreau, 

L.M. Berger и т.д.) ученых. 

Проведенный анализ научно-технической литературы свидетельствует, что 

решение проблемы восстановления изношенных поверхностей и повышения 

эксплуатационной стойкости деталей возможно на основе применения принципов 

комплексного легирования при разработке порошковых композиций. Исследования 

таких ученых, как О.Г. Девойно, А.Ю. Рудницкого и других демонстрируют, что 

достижение требуемого комплекса эксплуатационных характеристик изделий 

обусловлено не только композиционным составом порошковых материалов, но и 

совершенствованием технологических параметров газопламенного напыления. 

Получение новых научных представлений о процессах поверхностного структурного 

упрочнения при газопламенном напылении, включая механизмы карбидообразования 

в напыленных композициях, создает теоретическую основу для прогнозирования 

механических и эксплуатационных свойств рабочих поверхностей 
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тяжелонагруженного оборудования, что подчеркивает научную и практическую 

значимость настоящего исследования. 

Объектом исследования является процесс упрочнения рабочей поверхности 

ответственных деталей нефтегазового оборудования методом газопламенного 

напыления.  

Предмет исследования - механизм структурообразования и формирования 

функциональных свойств износостойких вольфрамсодержащих покрытий. 

Цель работы - управление структурообразованием и комплексом механических 

свойств вольфрамсодержащих покрытий, полученных газотермическим напылением 

порошковых композиций системы Ni-Cr-B-Si-WС на поверхность ответственных 

деталей нефтегазового машиностроения. 

Задачи исследования:  

1. Разработка составов напыляемых композиций с оптимальным содержанием и 

формой карбида вольфрама в металлической матрице.  

2. Оптимизация параметров газотермического напыления, обеспечивающих 

требуемое сочетание механических свойств.  

3. Выявление закономерностей структурообразования при напылении и 

термическом упрочнении поверхности.  

4. Оценка напряжённого состояния и эксплуатационных характеристик детали с 

вольфрамсодержащим покрытием; апробация технологии упрочнения рабочей 

поверхности в условиях ремонтного производства. 

Содержание диссертации соответствует п. 2 «Теоретические и 

экспериментальные исследования фазовых и структурных превращений в металлах и 

сплавах, происходящих при различных внешних воздействиях, включая 

технологические воздействия, и влияние сварочного цикла на металл зоны 

термического влияния, их моделирование и прогнозирование», п. 3 «Теоретические и 

экспериментальные исследования влияния структуры (типа, количества и характера 

распределения дефектов кристаллического строения) на физические, химические, 

механические, технологические и эксплуатационные свойства металлов и сплавов» и 

п. 6 «Разработка новых и совершенствование существующих технологических 

процессов объемной и поверхностной термической, химико-термической, 

термомеханической и других видов обработок, связанных с термическим или 

термодеформационным воздействием, цифровизация и автоматизация процессов, а 

также разработка информационных технологий систем сквозного управления 

технологическим циклом, специализированного оборудования» паспорта научной 

специальности 2.6.1. «Металловедение и термическая обработка металлов и 

сплавов». 

Научная новизна: 

1. Научно и экспериментально обоснован новый (подтвержденный патентом) 

состав композиционного вольфрамсодержащего порошкового покрытия системы Ni-

Cr-B-Si-WC (59,0% Ni; 28,9% W; 5,3% Cr; 1,7% Fe; 1,2% B; 2,5% Si; 1,4% C), 

отличающийся рациональным содержанием легирующих элементов (W, Cr, B) в 

никелевой матрице, дисперсностью карбидной фазы в пределах 15–30 мкм, что 

обеспечивает формирование износостойкого слоя на рабочих поверхностях деталей 

нефтегазового оборудования. 

2. Впервые установлены зависимости между морфологическим составом 
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порошковых композиций и параметрами газотермического напыления 

вольфрамсодержащего покрытия системы Ni-Cr-B-Si-WС, позволяющие управлять 

структурой и свойствами формируемой поверхности.  

3. Предложен механизм упрочнения, основанный на объемном приросте и 

межламельном перераспределении в γ-твердом растворе дисперсных фаз Cr23C6, Cr7C3, 

Cr3W3C, Cr5B3 и B4C, отличающийся формированием монолитной структуры, 

обладающей оптимальным упругопластическим состоянием и высокой степенью 

заполнения межламельных микропустот и обеспечивающий снижение пористости 

с 2,5 до 1 %, повышение микротвердости и износостойкости поверхности на 35-50%.  

Практическая значимость работы состоит в разработке и внедрении 

импортозамещающей технологии поверхностного упрочнения штоков поршневых 

компрессоров нефтегазового оборудования, гарантирующей регламентированные 

значения микротвёрдости, износостойкости, адгезионной прочности покрытия, при 

соблюдении шероховатости и геометрической точности изделия в соответствии с 

отраслевыми стандартами. 

Предложен метод формирования монолитного поверхностного слоя на основе 

вольфрамсодержащих композиций, включающий холодное газотермическое 

напыление с последующим оплавлением границ армированной карбидами никелевой 

металлической основы последующей высокотемпературной термической обработкой, 

в виде закалки с температуры 1100-1150 ℃ в водополимерную среду «Термат», 

формирующей спеченную ламельную структуру с выделением устойчивых 

дисперсных включений на основе хрома, вольфрама и бора.  

Технологичность и эксплуатационная стойкость разработанного покрытия 

подтверждается актами внедрения: 

- на Оренбургском газоперерабатывающем заводе ООО «Газпромпереработка» 

при промышленной эксплуатации, упрочненного порошковой композицией                         

Ni-Cr-B-Si-WС штока компрессора марки 382К01; 

- на предприятии ООО «Технология» г. Оренбурга успешно проведены 

промышленные испытания разработанных порошковых композиций, 

предназначенных для упрочнения штоков поршневых компрессоров дожимных 

компрессорных станций (ДКС) 1, 2 и 3 ступеней. 

Методы исследования, достоверность и обоснованность результатов.  

Методологическая база исследования сформирована на основе фундаментальных 

работ российских и зарубежных ученых, посвященных изучению структуры и свойств 

газопламенных покрытий металлических материалов. Теоретической основой 

послужили принципы классического материаловедения, методы металлографического 

анализа и технологии неразрушающего контроля, а также требования международных 

и российских нормативных документов. В исследовании применены методы 

математического моделирования экспериментальных процессов, инженерного анализа 

напряженно-деформированного состояния, теоретические положения трибологии и 

механизмов формирования ламельных структур в порошковых композиционных 

материалах. Достоверность результатов обеспечена корректной постановкой задач, 

значительным массивом экспериментальных данных и применением современных 

металловедческих методик. Верификация результатов осуществлялась путем 

сопоставления с данными ведущих отечественных и зарубежных исследователей в 

данной области. Практическая значимость работы подтверждена успешной 
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апробацией разработанных решений в реальных производственных условиях. 

Для достижения поставленной цели и задач диссертационной работы были 

использованы: металлографические исследования, микрорентгеноспектральный и 

рентгеноструктурный анализ. Механические характеристики определялись 

посредством испытаний на адгезионную прочность, износостойкость и 

дюрометрические измерения. Особое внимание уделялось анализу пористости 

покрытий и контролю остаточных напряжений магнитоанизотропным методом. 

Полученные экспериментальные данные подвергались статистической обработке с 

использованием программного обеспечения Statistica V12. 

Положения, выносимые на защиту: 

1. Рациональный состав вольфрамсодержащего покрытия на основе порошковой 

композиции системы Ni-Cr-B-Si-WC дисперсностью 15-30 мкм, обеспечивающего 

износостойкость рабочей поверхности за счет формирования армированной никелевой 

металлической основы с равномерным распределением включений WC и устойчивых 

дисперсных фаз: Cr23C6, Cr7C3, Cr3W3C, Cr5B3 и B4C, повышающих микротвердость 

поверхности (п.2 паспорта научной специальности). 

2. Закономерности структурообразования упрочняемого поверхностного слоя в 

процессе оптимизации параметров холодного газотермического напыления 

(п.3 паспорта научной специальности); 

3. Зависимость структурно-фазового состояния и эксплуатационных 

характеристик покрытия от параметров термической обработки, (п.6 паспорта научной 

специальности), состоящая в формировании уплотненной ламельной структуры 

металлической матрицы с равномерным карбидным упрочнением за счет 

целенаправленного формирования в рабочем слое сложных дисперсных карбидных и 

боридных фаз: Cr7C3, Cr5B3 и B4C, армирующих вязкую матрицу твердого раствора на 

основе Ni. 

4. Результаты распределения остаточных напряжений, формирующихся в изделии 

с покрытием системы Ni-Cr-B-Si-WC на этапах послойного нанесения и последующей 

термической обработки (п.6 паспорта научной специальности). 

Апробация работы. Основные результаты диссертационной работы обсуждались 

и получили одобрение на следующих конференциях: XX-ой международной научно-

технической Уральской школы-семинаре металловедов – молодых ученых 

(г. Екатеринбург, 2020 г.); LXIII-ой международной конференции, "Физика прочности 

и интеллектуальные диагностические системы" (г. Тольятти, 2021 г.); международной 

научно-технической конференции «Современные направления и перспективы 

развития технологий обработки и оборудования в машиностроении (г. Севастополь, 

2019 - 2020 гг.); научно-методических семинарах кафедры материаловедения и 

технологии материалов и научно-образовательного центра новых материалов и 

перспективных технологий ФГБОУ ВО «Оренбургский государственный 

университет» (г. Оренбург, 2018 - 2024 гг.); ХII Международной школы-конференции 

«Физическое материаловедение» (г. Тольятти, 2025 г.), Россия; VII Международной 

Школы-конференции «Перспективные многокомпонентные («высокоэнтропийные») 

материалы (г. Москва, 2025 г.). 

Реализация результатов работы. Результаты диссертационной работы приняты 

к применению на машиностроительном предприятии сервисного обслуживания и 

ремонта ООО «Технология», а также на предприятиях: ООО «Газпром Добыча 
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Оренбург», ООО «Газпром Добыча Астрахань», ООО «Газпром Нефть Оренбург», в 

учебном процессе научно-образовательного центра новых материалов и 

перспективных технологий ФГБОУ ВО «Оренбургский государственный 

университет» при подготовке обучающихся по направлению «Материаловедение и 

технологии материалов». 

Личный вклад автора заключается в постановке исследовательских задач, 

проведении теоретических и экспериментальных исследований с последующей 

обработкой данных, анализом и научной интерпретацией результатов; 

формулировании положений, выводов и заключения по работе, а также в подготовке 

публикаций и внедрении результатов в производство. 

Публикации. По теме диссертации опубликовано 20 научных статей, в том числе 

2 – в изданиях из «Перечня…» ВАК, 4 – в изданиях, индексируемых в международных 

базах SCOPUS и Web of Science, 1 патент на изобретение. 

Структура и объем работы. Диссертация включает введение, пять разделов с 

описанием результатов исследований, заключение, изложена на изложена на 192 

страницах, содержит 100 рисунка, 26 таблицы и список использованных источников из 

220 наименований, 3 приложения. 
 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 
 

Во введении приведены: обоснование актуальности темы исследования; цель и 

задачи исследования; объект и предмет исследования; научная новизна и 

практическая значимость работы; сведения об апробации и положения, выносимые 

на защиту. Дан краткий обзор структуры и содержания диссертационной работы. 

В разделе 1 «Анализ современного состояния технологий восстановления и 

повышения износостойкости деталей компрессорного оборудования» проведен 

комплексный анализ литературных источников, соответствующих тематике 

диссертационной работы. Детально изучены специфические условия эксплуатации, 

основные причины возникновения дефектов и принципы упрочнения поверхностей 

ответственных элементов нефтегазоперерабатывающего оборудования. Особое 

внимание уделено систематизации сведений о композиционных порошковых 

материалах, обеспечивающих достижение требуемых эксплуатационных 

характеристик. Рассмотрено влияние различных независимых факторов на 

прочностные характеристики, износостойкость, адгезионную прочность и пористость 

при нанесении покрытий методом газотермического напыления. Проведенный 

комплексный аналитический обзор научных публикаций, патентных документов и 

технической документации позволил сформулировать цель и задачи диссертации.  

В разделе 2 «Разработка составов напыляемых композиций, получение 

покрытий и методы исследования» представлены систематизированные сведения о 

разрабатываемых материалах, используемом лабораторном оборудовании и 

методических принципах проведения исследования. На основании анализа 

зарубежных прототипов методом обратного инжиниринга определены ключевые 

требования к упрочняющим покрытиям компрессорного оборудования, 

учитывающие как эксплуатационные механические свойства, так и технологические 

параметры процесса их нанесения. 

Отработку режимов газотермического напыления проводили на термически 
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обработанной стали AISI 4140 (ASTM A331). Напыление опытных образцов 

осуществляли на установке Castodyn DS 8000 c давлением ацетилена 0,7 бар, сжатого 

воздуха до 6 бар.  

Согласно требованиям к химическому составу, структуре и механическим 

свойствам изделия, учитывая состав и свойства основного материала, требования к 

эксплуатации оборудования, были выбраны несколько типов опытных порошковых 

композиций системы Ni-Cr-B-Si-WC с размером фракции металлической основы 80-

120 мкм, карбида вольфрама в пределах 15-120 мкм, с соблюдением соотношения 

металлическая основа – карбид вольфрама 2:1. РЭМ-изображения и параметрический 

анализ порошков представлен на рисунке 1. 
 

 

Рисунок 1 – РЭМ-изображения и размерные параметры порошковых композиций: а – 

компоненты металлической основы, б – карбид вольфрама 
 

Разработка состава и морфологии композиционного упрочняющего покрытия 

осуществлялась путем реализации и обработки данных матрицы планирования 33-

факторного эксперимента. В качестве результирующих параметров рассматривались 

износостойкость (y1), пористость (y2) и степень усвоения карбида вольфрама (y3) 

покрытия, управляемыми параметрами были приняты размер фракции, морфология и 

процентное содержание вольфрама в исходной порошковой смеси. В ходе 

регрессионного анализа определены уравнения зависимости, оптимальные контуры 

вариативности переменных, оценена вероятность выборки значений (рисунок 2). 

 
 

   
y3=0,1602 + 0,1091Х1 +  0,03Х1

2 +
0,063Х2 − 0,0263Х3 +
0,008Х3

2+0,027Х1Х2+0,048Х1Х2
2 −

0,0271Х1
2Х2 − 0,003Х1

2Х2
2 −

0,0034Х1Х3 − 0,007Х2Х3 

коэффициент корреляции R2 = 0,9871 

y2 =3,1944 + 2,0183Х1 +  1,3383Х1
2 +

0,5266Х2 + 0,9522Х2
2 − 0,1966Х3 +

0,1633Х3
2+0,1033Х1Х2+0,3766Х1Х2

2 −
0,2033Х1

2Х2 − 0,4733Х1
2Х2

2 +
0,1233Х2Х3 + 01916Х2

2Х3 −
0,3733Х2

2Х3
2; 

коэффициент корреляции R2 = 0,9865.  

y1 = 11,4937 − 7,7833ЗХ1 −
3,3722Х2 − 1,1389Х3 + 1,5167Х1Х2 −
11,05Х1Х2

2 + 9,5738Х1
2Х2

2 −
6,3083Х1Х3 + 5,4083Х1

2Х3 +
4,6083Х2

2Х3 + 1,4488Х2
2Х3

2 

коэффициент корреляции R2 = 0,9738; 

 
 

Рисунок 2 – Результаты статистической обработки данных для процесса оптимизации состава 

упрочняющего покрытия системы Ni-Cr-B-Si-WC: А – величина износа в условиях сухого трения, гр.; 

Б – процентное содержание WC (%); В – размер фракции, мкм; Г – пористость (%); Д – содержание 

карбидной фазы WC в покрытии (%) 
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Для выявления эффективного режима нанесения разработанного состава 

упрочняющего покрытия выполнена оптимизация технологических параметров 

процесса холодного газотермического напыления (ХГТН). Этап оптимизации 

технологических параметров нанесения упрочняющего покрытия включал 

реализацию 33-факторного эксперимента, где в качестве варьируемых параметров 

приняты: расстояние от сопла до детали (мм), скорость линейного перемещения 

(мм/сек), скорость вращения заготовки (мм/мин), а выходными величинами являлась 

адгезионная прочность (y1), содержание карбидной фазы WC в покрытии (y2), 

рисунок 3. 
 

  
 

 
y1 =30,0704 − 0,950Х1 −  0,8056Х1

2 + 5,566Х2
2 +

7,851Х3
2 − 1,525Х1Х2 − 1,7167Х1Х3 + 0,850Х1Х3

2 −
1,650Х1

2Х3 − 1,258Х2 Х3 +1,350Х2
2 Х3 −10,058Х2

2Х3
2 

коэффициент корреляции R2 = 0,8156 

y2 =26,3444 − 0,766Х1 +  0,667Х1
2 − 0,0677Х2

2 − 0,1833Х3 +
1,883Х3

2 − 1,366Х1Х2−1,950Х1
2Х2

2 − 1,7167Х1Х3 − 0,3167Х1
2Х3 − 

1,058Х2 Х3 −1,225Х2Х3
2 

коэффициент корреляции R2 = 0,7787 
 

Рисунок 3 – Результаты статистической обработки данных для процесса оптимизации режима 

ХГТН упрочняющего покрытия системы Ni-Cr-B-Si-WC: а – адгезионная прочность (МПа); б – 

скорость линейного перемещения (мм/сек); в – расстояние от сопла до детали (мм); г – скорость 

вращения заготовки (мм/мин); д – содержание карбидной фазы WC в покрытии (%) 
 

Исследования микроструктуры оптимального, с морфологической точки зрения, 

состава упрочняющего покрытия системы Ni-Cr-B-Si-WC показали, что в результате 

применения мелкодисперсных порошковых композиций WC сферической формы 

размером 15-30 мкм получены повышенные показатели плотности упаковки частиц 

между ламелями никелевой матрицы, уменьшен общий показатель пористости до 

2,45%, снижено содержание окислов, как в объеме покрытия, так и на границе слоев. 

В рамках проведенного исследования найдены ключевые составы для 

формирования покрытия, оптимальные параметры процесса их напыления, а также 

значения выходных характеристик (таблица 1).  
 

Таблица 1 – Оптимальные параметры технологического процесса формирования 

упрочняющего покрытия системы 
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Спектральным методом определен химический состав поверхностного слоя на 

основе разработанного покрытия: 59% Ni; 28,9% W; 5,4% Cr; 1,7% Fe; 1,2% B; 2,4% 

Si; 1,4% C.  

В разделе 3 «Исследование закономерностей структурообразования в 

поверхностном слое при напылении» представлены результаты структурных 

исследований после различных режимов напыления. Металлографические 

исследования выполняли на цифровом оптическом микроскопе Olympus DSX100 в 

соответствии с требованиями ГОСТ 5639, ГОСТ 10243. Для детального изучения 

морфологии поверхности применяли растровую электронную микроскопию на 

микроскопе JEOL JSM-6000, работающем в низковакуумном режиме. Фазовый состав 

покрытий, включая содержание карбидных фаз, определяли на минидифрактометре 

МД-10 при напряжении 25 кэВ. Оценку пористости проводили по 

стандартизированной методике ASTM E2109-01 (Метод A) с использованием 

микроскопа Nikon Eclipse, что обеспечило высокую точность измерений. 

Сравнительный металлографический анализ структуры и пористости покрытия 

до и после оптимизации состава и режимов нанесения покрытия (рисунок 4), показал, 

что в результате реализации установленных режимов напыления были достигнуты 

улучшенные показатели содержание карбидной фазы WC в покрытии благодаря 

более плотному и равномерному распределению частиц в покрытии. 
 

 

 

 

а б 

Рисунок 4 – Сравнительный анализ структуры и пористости до и после 

оптимизации процесса ХГТН разработанной порошковой композиции системы Ni-Cr-

B-Si-WC: а – до оптимизации, б – напыление по оптимальным параметрам 
 

Анализ структуры покрытия до оптимизации показал, что карбид вольфрама 

представлен дроблеными частицами с неравномерным распределением. Данные 

частицы формируют полости в карбидном пространстве, что способствует 

выкрашиванию карбида и повышению пористости покрытия. После процесса 

оптимизации WC представлен сферическими гранулами, имеющими размер, 

идентичный исходной фракции до 15 мкм. Это свидетельствует о том, что 

Поры 

Покрытие 
Ламельная 

структура Основа 

WC 
WC WC 

Покрытие 
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Матрица  

типа Ni-Cr-B 
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напыляемые частицы при скоростном соударении с подложкой не испытывают 

пластической деформации критического уровня, вследствие чего их форма и размеры 

остаются неизменными, что не препятствует свободному формированию плотных 

ламелей вязкой никелевой составляющей покрытия. Карбиды вольфрама равномерно 

распределены в связке, не образуют свободных полостей на границе WC – связка. 

Пористость после оптимизации значительно снижается за счет уменьшения 

межламельных расстояний.  

С целью установления распределения легирующих элементов в напыленном 

слое, выполнен микрорентгеноспектральный элементарный анализ, результаты 

представлены на рисунке 5. 
 

 

№ 
Атомные доли элементов в % 

C Cr Si Ni B W 

001 56,85 - - - - 43,15 

002 49,39 - -  - 50,61 

003 43,60 - - - - 56,40 

004 61,84 - - - - 38,16 

005 40,78 3,84 - - - 55,38 

006 42,71 3,65 1,34 1,64 - 50,66 

007 48,81 4,06 - - - 47,13 

008 45,13 3,52 0,21 0,31 0,05 50,78 

009 30,53 2,6 - 0,95 - 65,92 

среднее 46,62 3,53 0,77 0,97 0,05 50,91 

Стехиометрический состав: WC 

010 20,31 65,29 5,44 8,96 - - 

011 26,67 72,48 - 0,85 - - 

012 13,00 69,27 - 3,05 - 14,68 

013 22,49 71,68 1,25 1,42 - 3,16 

014 25,92 49,11 3,04 5,57 - 16,36 

015 25,27 64,70 2,69 1,38 - 5,96 

016 15,86 68,67 - 5,24 0,35 9,88 

017 24,10 66,10 - 8,00 - 1,8 

018 26,62 58,98 0,77 - 2,37 11,26 

среднее 22,24 64,81 1,46 3,83 0,30 7,01 

Стехиометрический состав: Cr3C; Cr3W3C 
  

Рисунок 5 – Микроструктура напыленного слоя с указанием точек определения 

атомной доли элементов  
 

Анализ покрытия после напыления без термической обработки показал, что 

состав порошковой композиции обеспечивает формирование структуры на основе 

ламелей никеля, армированных хромом и бором, по границам ламелей распределены 

частицы карбида вольфрама (WC), представляющие собой сферические гранулы, 

имеющие размер в пределах 15 мкм. Стехиометрический расчет установил наличие 

карбидных фаз WC, Cr3C, Cr3W3C в стехиометрическом соотношении.   

Анализ картограмм распределения основных элементов в покрытии показал 

(рисунок 6), что частицы вольфрама (W) преимущественно формируют контуры 

сферической формы, а дополнительные легирующие элементы, как (Cr и B) 

равномерно распределены по всему объёму напыленного слоя.  
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Рисунок 6 – Картограмма распределения основных элементов покрытия Ni-Cr-

B-Si-WC 

 

Образованные в процессе напыления и равномерно распределенные в структуре 

покрытия карбидные и боридные включения представляют собой устойчивые 

соединения, обеспечивающие повышение эксплуатационных характеристик материала. 

Наличие данных фаз в матрице, определяет перспективность применения данного 

покрытия в условиях интенсивных абразивных и механических нагрузок. 

На рисунке 7 представлена рентгенограмма и параметры пиков в напыленном 

покрытии системы Ni-Cr-B-Si-WC в соотношении 30% упрочняющей карбидной 

фазы вольфрама и 70% матрицы.  
 

 
№ 1 2 3 4 5 6 7 8 9 

2θ˚ 46,92 54,54 68,20 68,80 71,10 82,29 93,90 99,09 118,04 

d 1,936 1,682 1,375 1,364 1,325 1,171 1,054 1,013 0,899 

фаза Ɣ-Ni Cr23C6 Cr3W3C Ni3B B4C WC Cr3W3C WC W2C 
 

Рисунок 7 – Рентгенограмма и параметры пиков покрытия  
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содержание которых является определяющим фактором дополнительного 

увеличения твердости, износостойкости напыленного покрытия подтверждены 

данными рентгенофазового анализа.   

В разделе 4 «Анализ влияния режимов термической обработки на структуру и 

свойства материала с покрытием» продемонстрирована возможность управления 

фазовым составом и морфологией покрытия термическим воздействием. 

Термическая обработка покрытия Ni-Cr-B-Si-WC применялась с целью повышения 

эксплуатационных характеристик за счет увеличения адгезионной прочности, 

снижения внутренних напряжений и формирования более плотной ламельной 

структуры. 

Термическую обработку выполняли по режимам: нагрев в интервале температур 

1000-1200 °C, выдержка и охлаждение в закалочных средах (термат, масло). 

Твердость, износостойкость и адгезионные характеристики покрытия до и после 

термической обработки оценивали в соответствии с требованиями отечественных и 

международных стандартов. Трибологические испытания осуществлялись на 

машине трения СМЦ-2 методом сухого трения согласно нормативным требованиям 

ASTM G65. В качестве контртела использовали ролик из закаленной 

инструментальной стали У8 с твердостью 60 HRC, контактирующий с испытуемым 

образцом при различных скоростях вращения: 500, 750 и 1000 мин⁻¹. Оценку 

адгезионной прочности покрытий проводили клеевым методом в полном 

соответствии со стандартом ASTM C633-13. 
  

Таблица 3 – Режимы термической обработки материала с покрытием  

Среднее значение 

Температура нагрева под закалку, °С 

1000 1050 1100 1150 1200 

Т
ер

м
ат

 

М
ас

л
о

 

Т
ер

м
ат

 

М
ас

л
о

 

Т
ер

м
ат

 

М
ас

л
о

 

Т
ер

м
ат

 

М
ас

л
о

 

Т
ер

м
ат

 

М
ас

л
о

 

Убыль массы, грамм 0,08 0,09 0,08 0,7 0,01 0,02 0,01 0,01 0,07 0,1 

Пористость, % 4,20 4,38 4,09 4,11 2,15 2,01 1 2,70 4,52 4,78 

Адгезионная прочность, МПа 35,1 34,5 34,4 37,6 39,5 40,5 42,2 39,8 23,5 21,5 

 

В результате применения термической обработки (закалка в водополимерную 

среду «Термат» с температуры 1150 °C), получены повышенные показатели 

адгезионной прочности за счет частичного переплавления подслоя с основным 

металлом. Микроструктура образцов с композиционным покрытием Ni-Cr-B-Si-WC 

до и после закалки с 1150 °C представлена на рисунке 8.  

Структура системы Ni-Cr-B-Si-WC до термической обработки 

характеризовалась преимущественным содержанием ɣ-твердого раствора на основе 

Ni в виде протяженных ламелей, по границам которых усвоены частицы карбида WC, 

представляющие собой сферические гранулы, имеющие размер в пределах 10-15 мкм. 

Микротвердость основы покрытия (Ni-Cr-B) составила порядка 550 HV0,1, включений 

типа WC - 2500 HV0,1. После термической обработки наблюдается увеличение 

содержания карбидных фаз и протяженности переходной зоны благодаря частичному 

оплавлению и диффузии компонентов покрытия, преимущественно Ni и Cr в 

стальную основу. В переходном слое глубиной (15-25 мкм), наблюдается диффузия 

железа из основы в покрытие, а никеля, хрома и др. элементов из покрытия в основу.  
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а б 

Рисунок 8 – Микроструктура и характер распределения пористости образцах с 

покрытием: а – до термической обработки, б – после закалки в «Термат» с 1150 °C 
 

Термическая обработка оказала благоприятное влияние на снижение пористости 

покрытия. Данный факт подтверждает положительный эффект от процесса спекания 

компонентов матрицы покрытия, основанный на увеличении площади контакта и 

более полном «обрамлении» карбидов вольфрама никелевыми ламелями, а также 

дополнительном выделении из металлической основы мелких карбидных включений 

на основе хрома, армирующих никелевую матрицу и вносящих дополнительный 

вклад в повышение микротвердости покрытия на этапе термической обработки. В 

результате оплавления покрытия системы Ni-Cr-B-Si-WC при температуре 1150 С 

существенно увеличилась плотность износостойкого слоя, слоистость отсутствует, 

мелкодисперсная карбидная фаза равномерно распределена по объему рабочего слоя. 

Граница раздела фаз размыта, наблюдается интенсивная диффузия легирующих 

элементов из покрытия в основу. 

В процессе оплавления при термическом воздействии в микроучастках жидкого 

состояния сформировались метастабильные карбидные фазы, расширяющие область 

растворимости легирующих элементов в твердом состоянии и измельчающие 

элементы ламельной структуры. В данном случае причиной образования 

метастабильных фаз является насыщение кристаллизующегося ɣ- твердого раствора 

на основе Ni легирующими элементами (W, Cr, B) на этапе термической обработки, 

что подтверждено результатами микрорентгеноспектрального анализа, 

представленного на рисунке 9. 



15  

 

№ 
Атомная доля элементов в % 

C Si Cr Fe Ni B W 

001 24,81 1,99 5,55 3,19 21,8 - 42,66 

002 18,01 2,27 4,29 3,59 27,5 - 44,34 

003 24,23 2,56 5,34 - 15 1,11 51,76 

004 26,46 2,17 5,19 4,24 12,7 - 49,24 

005 19,39 3,37 4,79 1,02 34,1 1,34 35,99 

006 28,04 2,54 5,20 1,03 14,2 - 48,99 

007 24,84 2,31 4,70 1,04 35,0 - 32,11 

008 19,58 2,11 5,67 - 35,1 - 37,54 

009 22,48 2,14 5,65 - 20,9 - 48,83 

среднее 23,31 2,38 5,15 1,56 24,0 0,27 43,27 

Стехиометрический состав: W2С 

010 33,36 2,17 5,00 1,08 23,0 1,11 34,28 

011 17,22 3,38 4,91 1,74 35,1 - 37,65 

012 29,49 2,44 5,46 - 34,1 1,28 27,23 

013 39,77 1,85 6,38 - 23,2 1,09 27,71 

014 30,81 2,05 15,0 1,03 23,8 - 27,31 

015 22,91 1,93 4,28 1,09 36,0 1,29 32,50 

016 26,32 1,81 5,16 - 34,0 1,27 31,44 

017 24,55 1,84 5,08 1,04 43,0 1,12 23,37 

018 26,41 1,71 4,76 - 27,4 - 39,72 

среднее 27,87 2,13 6,22 1,19 31,1 1,19 31,24 

Стехиометрический состав: WС; (Cr,W)C  
 

 
Рисунок 9 – Микроструктура напыленного слоя с указанием точек определения 

атомной доли элементов после закалки в «Термат» с 1150 °C 

 

Термическая обработка обеспечила формирование монолитной структуры с 

растворением карбидных включений в исходной матрице. При толщине покрытия 

0,34 мм дефектов не обнаружено. Стехиометрический расчет установил наличие 

карбидных фаз: W2С; WС; (Cr,W)C.  

Результаты рентгенофазового анализа покрытия системы Ni-Cr-B-Si-WC после 

термической обработки позволили зафиксировать множественные мелкие карбидные 

включения, состав которых соответствует сложным карбидам типа Cr23C6; Cr7C3; 

Cr3W3C; γ-Ni; Cr5B3; B4C выделившимся на стадии термической обработки и 

повышающим износостойкость покрытия.  

Известно, что наличие в напыленном слое никелевой матрицы в виде ɣ- твердого 

раствора способствует повышению вязкости разрушения и износостойкости 

покрытия, а наличие в металлической основе высокопрочных карбидных фаз должно 

обеспечить повышенную прочность и износостойкость покрытия в условиях 

граничного трения и трения без смазки. Для определения влияния термической 

обработки на износостойкость покрытия провели испытания на сопротивление 

сухому изнашиванию в паре трения металл-покрытие. Анализ зависимости массового 

износа от режимов термической обработки свидетельствует, что для покрытий с 30%-

ным содержанием упрочняющей карбидной фазы WC, полученных методом 

газопламенного напыления; последующая термическая обработка в температурном 

диапазоне 1100-1150 °С обеспечивает следующие эксплуатационные характеристики: 

убыль массы - 0,01 г/см2; адгезионная прочность - 42,2 МПа; пористость – 1 %. 
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№ 1 2 3 4 5 6 7 8 9 10 11 

2θ˚ 49,15 53,24 66,11 66,31 67,23 78,18 78,89 95,06 100,47 112,21 118,71 

d 1,853 1,720 1,413 1,409 1,392 1,222 1,213 1,045 1,002 0,928 0,896 

фаза Ɣ-Ni Cr5B3 WC W2C B4C Cr23C6 Cr3W3C WC Cr7C3 W2C WC 
 

Рисунок 10 – Рентгенограмма и параметры пиков покрытия Ni-Cr-B-Si-WC после 

термической обработки  
 

Сравнительные исследования износостойкости показали, что благодаря 

упругопластическим свойствам полученного композиционного покрытия, после 

термической обработки скорость изнашивания снижается в 1,2-1,3 раза. При этом, 

процесс оплавления газотермических покрытий не только усиливает эффект 

износостойкости, но и улучшает сцепление с подложкой за счет интенсификации 

диффузионных процессов на границе покрытия с основным металлом, а также 

благодаря релаксации неблагоприятных растягивающих напряжений, которые 

присутствуют в исходных покрытиях.  

В разделе 5 «Оценка напряжённого состояния и эксплуатационных 

характеристик материала с вольфрамсодержащим покрытием» описан анализ 

распределения напряжений в готовом изделии «Шток компрессора», проведённый 

посредством прибора «Stressvision», в основе работы которого лежит метод 

магнитоанизотропного анализа механических напряжений. Схема измерения РГМН 

(разность главных механических напряжений) представлена на рисунке 11.  

 

 
 

Рисунок 11 – Схема измерения разности РГМН 

 

Результаты замеров разности главных механических напряжений, полученных с 

помощью сканера (индикатора) механических напряжений «Stressvision», приведены 

на рисунке 12.  
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б 

Рисунок 12 – Картограммы распределения РГМН: а – оригинальное изделие 

(шток Dresser Rand бывший в эксплуатации); б – экспериментального образца 

напыленного по оптимизированным режимам: 1 – зона краевых дефектов, 2 – зона 

сжимающих напряжений, 3 – компенсационные зоны 

 

 
Рисунок 13 – Сравнительный анализ распределения средних остаточных 

напряжений в опытном и оригинальном изделии (шток Dresser-Rand)  

a 
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Результаты обработки данных свидетельствуют о равномерном распределении 

разности главных механических напряжений по поверхности опытного изделия 

«Шток компрессора» с нанесением разработанного покрытия Ni-Cr-B-Si-WC. В 

оригинальном изделии идентифицированы две локальные зоны напряженного 

состояния: зона 8 с максимальным значением РГМН - 346,84 у.е. и зона 6 с РГМН - 

225,5 у.е. При этом базовый уровень распределения напряжений сохраняет 

стабильность в диапазоне 10-20 у.е. Полученные данные свидетельствуют, что у 

опытного натурного изделия с поверхностным упрочнением методом холодного 

газопламенного напыления в процессе нанесения покрытия и последующей 

механической обработки формируются незначительные равномерные остаточные 

механические напряжения в зоне покрытия, не превышающие значения РГМН - 

10 у.е., что позволяет обоснованно рекомендовать разработанный состав покрытия и 

способ его нанесения для проведения опытно-промышленных испытаний. 

Математическое моделирование нагрузок в программном комплексе ANSYS 

позволило детально изучить поведение покрытия Ni-Cr-B-Si-WC в условиях 

эксплуатационных нагрузок. При моделировании нагружения соединения с полной 

затяжкой резьбового соединения «шток-гайка» установлено, что распределение 

напряжений равномерно по всей площади напыленного покрытия. Средние 

нормальные напряжения вдоль оси штока не превышают 32,46 МПа (рисунок 14).  

 

 
Рисунок 14 – Средние нормальные напряжения 

 

Согласно нормативной документации (API, внутренними спецификациями CPI и 

Dresser-Rand) изделие с покрытием WC допускается к эксплуатации при контактной 

нагрузке 6,86 МПа, давлении 6,67 МПа и температуре 150 °С в среде, содержащей 2% 

H₂S, 2% CO₂ и до 1% водяного пара. Результаты разработки были успешно 

апробированы в данных условиях на предприятиях ООО «Технология» и ООО 

«Газпром переработка» (г. Оренбург). Опытная эксплуатация продемонстрировала не 

только соответствие всем техническим требованиям, но и значительный 

экономический эффект. Применение импортозамещающей технологии на 

предприятиях нефтегазового сектора позволило сократить продолжительность 

ремонтного цикла компрессорного оборудования с 270 до 45 рабочих дней, что 

подтверждает высокую эффективность предложенного состава покрытия и метода 

его нанесения (подтверждено актами внедрения с предприятий).  
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ЗАКЛЮЧЕНИЕ 

 

1. Разработано вольфрамсодержащее покрытие порошковой композиции системы 

Ni-Cr-B-Si-WC (59,0% Ni, 28,9% W, 5,3% Cr, 1,7% Fe, 1,2% B, 2,5% Si, 1,4% C) 

дисперсностью 15-30 мкм. Сформирована армированная никелевая металлическая 

основа с равномерным распределением дисперсных карбидных включений WC и 

устойчивых карбидных и боридных фаз.  

2. Определены основные оптимальные параметры газопламенного напыления 

(расстояние от сопла горелки до детали порядка 130 мм, скорость линейного 

перемещения - 25 мм/сек, скорость вращения заготовки - 100 мм/мин, угол установки 

сопла к напыляемой поверхности - 90°), обеспечивающие содержание карбидной 

фазы WC в покрытии в пределах 29,1 - 30 % и позволяющие достигнуть значений 

адгезионной прочности в пределах 36,0 - 39,9 МПа.  

3. Выявлено, что с уменьшением размерности фракции карбида вольфрама (WC) 

с 120 до 15-30 мкм увеличивается общее содержание усвоенных карбидов в матрице. 

Установлено, что карбидное упрочнение никелевой матрицы частицами дисперсного 

сферического карбида вольфрама WC позволяет улучшить послойное формирование 

ламелей покрытия с образованием карбидов Cr23C6, Cr3W3C, WC, повысить плотность 

и однородность структуры, уменьшить объем свободных микропустот на границе 

WС-связка с 10 до 1 %.  

4. Разработан оптимальный режим термической обработки опытной порошковой 

композиции Ni-Cr-B-Si-WC. Определено, что за счет закалки с температуры 1150 °С 

в водополимерную среду «Термат», происходит формирование уплотненной 

ламельной структуры металлической матрицы с равномерным карбидным 

упрочнением. Прирост износостойкости после термической обработки 

обеспечивается за счет упругопластического состояния ламельной структуры, 

целенаправленного формирования в рабочем слое сложных дисперсных карбидных и 

боридных: Cr7C3, Cr5B3 и B4C, дополнительно выделяющихся на этапе термического 

упрочнения и армирующих вязкую матрицу ɣ- твердого раствора на основе Ni. 

5. Установлено, что фактические остаточные напряжения после реализации 

технологии получения и поверхностного упрочнения не влияют на 

работоспособность изделия, так как распределение разности главных механических 

напряжений на границе металл-покрытие не превышает 20 у.е., что соответствует 

остаточным напряжениям в пределах 1,3-9,1 МПа, при экспериментально 

подтвержденной адгезионной прочности покрытия 42,2 МПа. 

6. Разработанный состав и способ нанесения покрытия Ni-Cr-B-Si-WC внедрен в 

ремонтное производство предприятия сервисного машиностроения ООО 

«Технология» с целью упрочнения деталей нефтегазовой отрасли предприятия 

«Оренбургский газоперерабатывающий завод». В результате применения 

импортозамещающей технологии упрочнения деталей компрессорного оборудования 

прогнозируется сокращение сроков ремонтных простоев с 270 до 45 рабочих дней для 

каждого элемента установки. 
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